Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles

被引:131
作者
Avila, Artur [1 ]
Krikorian, Raphael [1 ]
机构
[1] Coll France, F-75231 Paris, France
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.4007/annals.2006.164.911
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for almost every frequency alpha epsilon R\Q, for every C-omega potential nu: R/Z -> R, and for almost every energy E the corresponding quasiperiodic Schrodinger cocycle is either reducible or nonuniformly hyperbolic. This result gives very good control on the absolutely continuous part of the spectrum of the corresponding quasiperiodic Schrodinger operator, and allows us to complete the proof of the Aubry-Andre conjecture on the measure of the spectrum of the Almost Mathieu Operator.
引用
收藏
页码:911 / 940
页数:30
相关论文
共 39 条
[1]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[2]   Regular or stochastic dynamics in real analytic families of unimodal maps [J].
Avila, A ;
Lyubich, M ;
de Melo, W .
INVENTIONES MATHEMATICAE, 2003, 154 (03) :451-550
[3]  
AVILA A, UNPUB SOME REMARKS L
[4]  
AVILA A, UNPUB
[5]   ON THE MEASURE OF THE SPECTRUM FOR THE ALMOST MATHIEU OPERATOR [J].
AVRON, J ;
VONMOUCHE, PHM ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :103-118
[6]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[7]   Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential [J].
Bourgain, J ;
Jitomirskaya, S .
JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) :1203-1218
[8]   Absolutely continuous spectrum for 1D quasiperiodic operators [J].
Bourgain, J ;
Jitomirskaya, S .
INVENTIONES MATHEMATICAE, 2002, 148 (03) :453-463
[9]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[10]  
Bourgain J., 2005, ANN MATH STUDIES, V158