Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules

被引:57
作者
Adil, Muhammad Abdullah [1 ,2 ]
Zhang, Jianqi [1 ]
Wang, Yuheng [3 ]
Yu, Jinde [3 ]
Yang, Chen [1 ]
Lu, Guanghao [3 ]
Wei, Zhixiang [1 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
Ternary organic solar cells; Bulk heterojunction interface; Phase separation; Aggregation-induced emission; 3D molecule; Energy transfer; RESONANCE ENERGY-TRANSFER; EFFICIENCY; POLYMER; PERFORMANCE; MORPHOLOGY; DONOR; RECOMBINATION; GENERATION; ACCEPTORS; PROSPECTS;
D O I
10.1016/j.nanoen.2019.104271
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An optimized bulk heterojunction (BHJ) interface, certifying enhanced exciton-splitting, charge separation and recombination inhibition, is vastly desired to obtain high power conversion efficiencies (PCEs). Herein, the ternary strategy has been employed to effectively modify the phase separation between the J71:ITIC blend by incorporating a 3D aggregation-induced emission (AIE) material, Tetraphenylethylene (TPE). Hence, as a consequence of improved charge mobility, lower bimolecular recombination and enhanced fill factor (FF), an excellent PCE of 12.16% has been achieved; a 21.23% increment over the PCE of binary devices. Likewise, Flory-Huggins parameter (chi) and surface free energy analysis reveals a high degree of miscibility between J71 and TPE, that leads to a rearrangement at the D-A interface such that TPE settles in between the D and A and thus forces the ITIC away from J71 and out of the mixed phase, indicating relatively higher average acceptor domain purity at the interface and ultimately better FF and PCE for the ternary devices. Likewise, the TPE inclusion in various other fullerene and nonfullerene systems also led to similar results, signifying this to be an effective methodology to boost the PCEs of the organic solar cells, especially for the systems with low FF.
引用
收藏
页数:11
相关论文
共 47 条
  • [1] Modulation of the Molecular Orientation at the Bulk Heterojunction Interface via Tuning the Small Molecular Donor-Nonfullerene Acceptor Interactions
    Adil, Muhammad Abdullah
    Zhang, Jianqi
    Deng, Dan
    Wang, Zhen
    Yang, Yang
    Wu, Qiong
    Wei, Zhixiang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (37) : 31526 - 31534
  • [2] Solvent additive-free ternary polymer solar cells with 16.27% efficiency
    An, Qiaoshi
    Ma, Xiaoling
    Gao, Jinhua
    Zhang, Fujun
    [J]. SCIENCE BULLETIN, 2019, 64 (08) : 504 - 506
  • [3] Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells
    Bi, Pengqing
    Xiao, Tong
    Yang, Xiaoyu
    Niu, Mengsi
    Wen, Zhenchuan
    Zhang, Kangning
    Qin, Wei
    So, Shu Kong
    Lu, Guanghao
    Hao, Xiaotao
    Liu, Hong
    [J]. NANO ENERGY, 2018, 46 : 81 - 90
  • [4] Dual Forster resonance energy transfer effects in non-fullerene ternary organic solar cells with the third component embedded in the donor and acceptor
    Bi, Pengqing
    Zheng, Fei
    Yang, Xiaoyu
    Niu, Mengsi
    Feng, Lin
    Qin, Wei
    Hao, Xiaotao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) : 12120 - 12130
  • [5] 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor
    Bin, Haijun
    Gao, Liang
    Zhang, Zhi-Guo
    Yang, Yankang
    Zhang, Yindong
    Zhang, Chunfeng
    Chen, Shanshan
    Xue, Lingwei
    Yang, Changduk
    Xiao, Min
    Li, Yongfang
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [6] Achieving High-Performance Ternary Organic Solar Cells through Tuning Acceptor Alloy
    Chen, Yusheng
    Ye, Pan
    Zhu, Zhen-Gang
    Wang, Xinlong
    Yang, Lei
    Xu, Xiaozhou
    Wu, Xiaoxi
    Dong, Tao
    Zhang, Hao
    Hou, Jianhui
    Liu, Feng
    Huang, Hui
    [J]. ADVANCED MATERIALS, 2017, 29 (06)
  • [7] Next-generation organic photovoltaics based on non-fullerene acceptors
    Cheng, Pei
    Li, Gang
    Zhan, Xiaowei
    Yang, Yang
    [J]. NATURE PHOTONICS, 2018, 12 (03) : 131 - 142
  • [8] Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages
    Cui, Yong
    Yao, Huifeng
    Zhang, Jianqi
    Zhang, Tao
    Wang, Yuming
    Hong, Ling
    Xian, Kaihu
    Xu, Bowei
    Zhang, Shaoqing
    Peng, Jing
    Wei, Zhixiang
    Gao, Feng
    Hou, Jianhui
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells
    Deng, Dan
    Zhang, Yajie
    Zhang, Jianqi
    Wang, Zaiyu
    Zhu, Lingyun
    Fang, Jin
    Xia, Benzheng
    Wang, Zhen
    Lu, Kun
    Ma, Wei
    Wei, Zhixiang
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Achieving over 16% efficiency for single-junction organic solar cells
    Fan, Baobing
    Zhang, Difei
    Li, Meijing
    Zhong, Wenkai
    Zeng, Zhaomiyi
    Ying, Lei
    Huang, Fei
    Cao, Yong
    [J]. SCIENCE CHINA-CHEMISTRY, 2019, 62 (06) : 746 - 752