Room Temperature Synthesis of Phosphine-Capped Lead Bromide Perovskite Nanocrystals without Coordinating Solvents

被引:33
作者
Ambroz, Filip [1 ]
Xu, Weidong [2 ,3 ]
Gadipelli, Srinivas [4 ]
Brett, Dan J. L. [4 ]
Lin, Chieh-Ting [2 ,3 ,5 ,6 ]
Contini, Claudia [2 ,3 ]
McLachlan, Martyn A. [5 ,6 ]
Durrant, James R. [2 ,3 ,7 ]
Parkin, Ivan P. [1 ]
Macdonald, Thomas J. [1 ,2 ,3 ]
机构
[1] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[2] Imperial Coll London, Dept Chem, White City Campus,Wood Lane, London W12 0BZ, England
[3] Imperial Coll London, Ctr Plast Elect Mol Sci Res, White City Campus,Wood Lane, London W12 0BZ, England
[4] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[5] Imperial Coll London, Dept Mat, South Kensington Campus, London SW7 2AZ, England
[6] Imperial Coll London, Ctr Plast Elect, South Kensington Campus, London SW7 2AZ, England
[7] Swansea Univ, Coll Engn, SPECIFIC, Bay Campus, Swansea SA1 8EN, W Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
nanocrystals; perovskites; phosphine ligands; room temperature synthesis; surface chemistry; QUANTUM DOTS; HALIDE PEROVSKITES; COLLOIDAL SYNTHESIS; HIGHLY LUMINESCENT; SOLAR-CELLS; PHOTOLUMINESCENCE; OXIDE; SIZE; BR; CL;
D O I
10.1002/ppsc.201900391
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The room temperature synthesis of perovskite nanocrystals (NCs) is typically achieved by employing a ligand-assisted reprecipitation (LARP) method, which can be handled in air, and its products are comparable to what is obtained using the traditional hot-injection method. However, the LARP method typically requires the use of coordinating polar solvents such as dimethylformamide, which are not appropriate for large-scale production due to toxicity concerns and can also degrade or form defective perovskite NCs. Herein, an amine and oleic-acid-free room temperature synthesis of lead bromide perovskite NCs is reported that uses a combination of trioctylphosphine oxide and diisooctylphosphinic acid ligands. This combination of ligands provides a stable platform for the polar-solvent-free synthesis in air of fully inorganic CsPbBr3 (fwhm approximate to 14 nm, emission = 519 nm) and hybrid organic-inorganic FAPbBr(3) (fwhm approximate to 19 nm) NCs with photoluminescence emission between 530 and 535 nm, which is in line with the Rec. 2020 color standards. In addition, it is shown that compared to a traditionally used ligand combination, phosphine ligands can be easily removed from the surface of the NCs, which is important for the future development of this technology in optoelectronic devices.
引用
收藏
页数:10
相关论文
共 45 条
[31]   Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J].
Swarnkar, Abhishek ;
Marshall, Ashley R. ;
Sanehira, Erin M. ;
Chernomordik, Boris D. ;
Moore, David T. ;
Christians, Jeffrey A. ;
Chakrabarti, Tamoghna ;
Luther, Joseph M. .
SCIENCE, 2016, 354 (6308) :92-95
[32]   Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes [J].
Tan, Yeshu ;
Zou, Yatao ;
Wu, Linzhong ;
Huang, Qi ;
Yang, Di ;
Chen, Min ;
Ban, Muyang ;
Wu, Chen ;
Wu, Tian ;
Bai, Sai ;
Song, Tao ;
Zhang, Qiao ;
Sun, Baoquan .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3784-3792
[33]   Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution [J].
Tian, Bin ;
Tian, Bining ;
Smith, Bethany ;
Scott, M. C. ;
Lei, Qin ;
Hua, Ruinian ;
Tian, Yue ;
Liu, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (17) :4345-4350
[34]   Methylammonium Lead Bromide Perovskite Battery Anodes Reversibly Host High Li-Ion Concentrations [J].
Vicente, Nuria ;
Garcia-Belmonte, Germa .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (07) :1371-1374
[35]   Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals [J].
Vybornyi, Oleh ;
Yakunin, Sergii ;
Kovalenko, Maksym V. .
NANOSCALE, 2016, 8 (12) :6278-6283
[36]   Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields [J].
Wei, Song ;
Yang, Yanchun ;
Kang, Xiaojiao ;
Wang, Lan ;
Huang, Lijian ;
Pan, Daocheng .
CHEMICAL COMMUNICATIONS, 2016, 52 (45) :7265-7268
[37]  
Wells H.L., 1893, Zeitschrift fur Anorg. Chemie, V3, P195, DOI DOI 10.1002/ZAAC.18930030124
[38]   Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics [J].
Wheeler, Lance M. ;
Sanehira, Erin M. ;
Marshall, Ashley R. ;
Schulz, Philip ;
Suri, Mokshin ;
Anderson, Nicholas C. ;
Christians, Jeffrey A. ;
Nordlund, Dennis ;
Sokaras, Dimosthenis ;
Kroll, Thomas ;
Harvey, Steven P. ;
Berry, Joseph J. ;
Lin, Lih Y. ;
Luther, Joseph M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (33) :10504-10513
[39]   Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes [J].
Xuan, Tongtong ;
Yang, Xianfeng ;
Lou, Sunqi ;
Huang, Junjian ;
Liu, Yong ;
Yu, Jinbo ;
Li, Huili ;
Wong, Ka-Leung ;
Wang, Chengxin ;
Wang, Jing .
NANOSCALE, 2017, 9 (40) :15286-15290
[40]   Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes [J].
Yassitepe, Emre ;
Yang, Zhenyu ;
Voznyy, Oleksandr ;
Kim, Younghoon ;
Walters, Grant ;
Castaneda, Juan Andres ;
Kanjanaboos, Pongsakorn ;
Yuan, Mingjian ;
Gong, Xiwen ;
Fan, Fengjia ;
Pan, Jun ;
Hoogland, Sjoerd ;
Comin, Riccardo ;
Bakr, Osman M. ;
Padilha, Lazaro A. ;
Nogueira, Ana F. ;
Sargent, Edward H. .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (47) :8757-8763