Ghost penalty

被引:285
作者
Burman, Erik [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
关键词
D O I
10.1016/j.crma.2010.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we discuss a simple penalty method that allows to increase the robustness of fictitious domain methods In particular the condition number of the matrix can be upper bounded independently of how the domain boundary intersects the computational mesh under rather weak assumptions (C) 2010 Academie des sciences Published by Elsevier Masson SAS All rights reserved
引用
收藏
页码:1217 / 1220
页数:4
相关论文
共 9 条
[1]   A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity [J].
Becker, Roland ;
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) :3352-3360
[2]   Approximate imposition of boundary conditions in immersed boundary methods [J].
Codina, Ramon ;
Baiges, Joan .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (11) :1379-1405
[3]   Evaluation of the condition number in linear systems arising in finite element approximations [J].
Ern, A ;
Guermond, JL .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2006, 40 (01) :29-48
[4]  
Girault V., 1995, Jpn. J. Ind. Appl. Math., V12, P487, DOI 10.1007/BF03167240
[5]   An unfitted finite element method, based on Nitsche's method, for elliptic interface problems [J].
Hansbo, A ;
Hansbo, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (47-48) :5537-5552
[6]   A NEW FICTITIOUS DOMAIN APPROACH INSPIRED BY THE EXTENDED FINITE ELEMENT METHOD [J].
Haslinger, Jaroslav ;
Renard, Yves .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1474-1499
[7]  
Lions J.L., 1988, FUNCTIONAL VARIATION, V2
[8]   NUMERICAL ANALYSIS OF A FINITE ELEMENT/VOLUME PENALTY METHOD [J].
Maury, Bertrand .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1126-1148
[9]  
Nitsche JA., 1971, ABH MATH SEM HAMBURG, V36, P9, DOI DOI 10.1007/BF02995904