A Prospectively Validated Prognostic Model for Patients with Locally Advanced Squamous Cell Carcinoma of the Head and Neck Based on Radiomics of Computed Tomography Images

被引:18
作者
Keek, Simon A. [1 ]
Wesseling, Frederik W. R. [2 ]
Woodruff, Henry C. [1 ,3 ]
van Timmeren, Janita E. [4 ]
Nauta, Irene H. [5 ]
Hoffmann, Thomas K. [6 ]
Cavalieri, Stefano [7 ]
Calareso, Giuseppina [8 ]
Primakov, Sergey [1 ]
Leijenaar, Ralph T. H. [9 ]
Licitra, Lisa [7 ,10 ]
Ravanelli, Marco [11 ]
Scheckenbach, Kathrin [12 ]
Poli, Tito [13 ]
Lanfranco, Davide [13 ]
Vergeer, Marije R. [14 ]
Leemans, C. Rene [5 ]
Brakenhoff, Ruud H. [5 ]
Hoebers, Frank J. P. [2 ]
Lambin, Philippe [1 ,3 ]
机构
[1] Maastricht Univ, GROW Sch Oncol, Dept Precis Med, D Lab, Univ Singel 40, NL-6229 ER Maastricht, Netherlands
[2] Maastricht Univ, Grow Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Med Ctr, Postbus 3035, NL-6202 NA Maastricht, Netherlands
[3] Maastricht Univ, GROW Sch Oncol, Dept Radiol & Nucl Med, Med Ctr, POB 5800, NL-6202 AZ Maastricht, Netherlands
[4] Univ Zurich, Univ Hosp Zurich, Dept Radiat Oncol, Ramistr 100, CH-8091 Zurich, Switzerland
[5] Vrije Univ Amsterdam, Canc Ctr Amsterdam, Otolaryngol Head & Neck Surg, Amsterdam UMC, Postbus 7057, NL-1007 MB Amsterdam, Netherlands
[6] Univ Ulm, Dept Otorhinolaryngol Head Neck Surg, i2SOUL Consortium, Frauensteige 14a Haus 18, D-89075 Ulm, Germany
[7] Univ Milan, Fdn IRCCS Ist Nazl Tumori, Head & Neck Med Oncol Unit, Via Giacomo Venezian 1, I-20133 Milan, Italy
[8] Fdn IRCCS Ist Nazl Tumori, Radiol Unit, Via Giacomo Venezian 1, I-20133 Milan, Italy
[9] Oncoradiomics SA, Clos Chanmurly 13, B-4000 Liege, Belgium
[10] Univ Milan, Dept Oncol & Hematooncol, Via S Sofia 9-1, I-20122 Milan, Italy
[11] Univ Brescia, Dept Med & Surg, Viale Europa 11, I-25123 Brescia, Italy
[12] Univ Hosp Dusseldorf, Dept Otorhinolaryngol Head & Neck Surg, Moorenstr 5, D-40225 Dusseldorf, Germany
[13] Univ Parma, Dept Med & Surg, Maxillofacial Surg Unit, Univ Hosp Parma, Via Univ,12-I, I-43121 Parma, Italy
[14] Vrije Univ Amsterdam, Canc Ctr Amsterdam, Dept Radiat Oncol, Amsterdam UMC, Postbus 7057, NL-1007 MB Amsterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
radiomics; machine learning; precision medicine; head and neck cancer; survival study; CANCER PATIENTS; PREDICTION; SURVIVAL; DELINEATION; DIAGNOSIS; LARYNGEAL; PET;
D O I
10.3390/cancers13133271
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Patients that suffer from advanced head and neck cancer have a low average survival chance. Improving prognosis could improve this survival rate as it may help in clinical decision making. Radiomics features calculated from images of the tumour describe tumour size, shape, and pattern. These characteristics may be linked to patient survival, which is investigated in this paper. We combined radiomics features with other biomarkers of survival of 809 patients to make a prognosis before treatment. We then compared the predicted prognosis with the actual outcome to see how well our model performs. Our model was able to make three distinct risk groups of low-, medium-, and high-survival patients. With these findings, doctors may make a better judgement of treatment and follow-up per patient, which might improve clinical outcomes. Background: Locoregionally advanced head and neck squamous cell carcinoma (HNSCC) patients have high relapse and mortality rates. Imaging-based decision support may improve outcomes by optimising personalised treatment, and support patient risk stratification. We propose a multifactorial prognostic model including radiomics features to improve risk stratification for advanced HNSCC, compared to TNM eighth edition, the gold standard. Patient and methods: Data of 666 retrospective- and 143 prospective-stage III-IVA/B HNSCC patients were collected. A multivariable Cox proportional-hazards model was trained to predict overall survival (OS) using diagnostic CT-based radiomics features extracted from the primary tumour. Separate analyses were performed using TNM8, tumour volume, clinical and biological variables, and combinations thereof with radiomics features. Patient risk stratification in three groups was assessed through Kaplan-Meier (KM) curves. A log-rank test was performed for significance (p-value < 0.05). The prognostic accuracy was reported through the concordance index (CI). Results: A model combining an 11-feature radiomics signature, clinical and biological variables, TNM8, and volume could significantly stratify the validation cohort into three risk groups (p < 0 center dot 01, CI of 0.79 as validation). Conclusion: A combination of radiomics features with other predictors can predict OS very accurately for advanced HNSCC patients and improves on the current gold standard of TNM8.
引用
收藏
页数:17
相关论文
共 57 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Tumor radiomic features complement clinico-radiological factors in predicting long-term local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancers
    Agarwal, Jai Prakash
    Sinha, Shwetabh
    Goda, Jayant Sastri
    Joshi, Kishor
    Mhatre, Ritesh
    Kannan, Sadhana
    Laskar, Sarbani Ghosh
    Gupta, Tejpal
    Murthy, Vedang
    Budrukkar, Ashwini
    Mummudi, Naveen
    Ganeshan, Balaji
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1109)
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] Combined CT radiomics of primary tumor and metastatic lymph nodes improves prediction of locoregional control in head and neck cancer
    Bogowicz, Marta
    Tanadini-Lang, Stephanie
    Guckenberger, Matthias
    Riesterer, Oliver
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Computed Tomography Radiomics Predicts HPV Status and Local Tumor Control After Definitive Radiochemotherapy in Head and Neck Squamous Cell Carcinoma
    Bogowicz, Marta
    Riesterer, Oliver
    Ikenberg, Kristian
    Stieb, Sonja
    Moch, Holger
    Studer, Gabriela
    Guckenberger, Matthias
    Tanadini-Lang, Stephanie
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (04): : 921 - 928
  • [6] Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers
    Breen, Stephen L.
    Publicover, Julia
    De Silva, Shiroma
    Pond, Greg
    Brock, Kristy
    O'Sullivan, Brian
    Cummings, Bernard
    Dawson, Laura
    Keller, Anne
    Kim, John
    Ringash, Jolie
    Yu, Eugene
    Hendler, Aaron
    Waldron, John
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 68 (03): : 763 - 770
  • [7] Development of a multiomics database for personalized prognostic forecasting in head and neck cancer: The Big Data to Decide EU Project
    Cavalieri, Stefano
    De Cecco, Loris
    Brakenhoff, Ruud H.
    Serafini, Mara Serena
    Canevari, Silvana
    Rossi, Silvia
    Lanfranco, Davide
    Hoebers, Frank J. P.
    Wesseling, Frederik W. R.
    Keek, Simon
    Scheckenbach, Kathrin
    Mattavelli, Davide
    Hoffmann, Thomas
    Lopez Perez, Laura
    Fico, Giuseppe
    Bologna, Marco
    Nauta, Irene
    Leemans, C. Rene
    Trama, Annalisa
    Klausch, Thomas
    Berkhof, Johannes Hans
    Tountopoulos, Vasilis
    Shefi, Ron
    Mainardi, Luca
    Mercalli, Franco
    Poli, Tito
    Licitra, Lisa
    [J]. HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2021, 43 (02): : 601 - 612
  • [8] Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) RESPONSE
    Collins, Gary S.
    Reitsma, Johannes B.
    Altman, Douglas G.
    Moons, Karel G. M.
    [J]. ANNALS OF INTERNAL MEDICINE, 2015, 162 (10) : 735 - 736
  • [9] Cozzi L, 2019, STRAHLENTHER ONKOL, V195, P805, DOI 10.1007/s00066-019-01483-0
  • [10] Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients
    Elhalawani, Hesham
    Kanwar, Aasheesh
    Mohamed, Abdallah S. R.
    White, Aubrey
    Zafereo, James
    Wong, Andrew
    Berends, Joel
    Abohashem, Shady
    Williams, Bowman
    Aymard, Jeremy M.
    Perni, Subha
    Messer, Jay
    Warren, Ben
    Youssef, Bassem
    Yang, Pei
    Meheissen, Mohamed A. M.
    Kamal, Mona
    Elgohari, Baher
    Ger, Rachel B.
    Cardenas, Carlos E.
    Fave, Xenia
    Zhang, Lifei
    Mackin, Dennis
    Marai, G. Elisabeta
    Vock, David M.
    Canahuate, Guadalupe M.
    Lai, Stephen Y.
    Gunn, G. Brandon
    Garden, Adam S.
    Rosenthal, David I.
    Court, Laurence
    Fuller, Clifton D.
    [J]. SCIENTIFIC REPORTS, 2018, 8