Demonstration of SWIR Silicon-Based Photodetection by Using Thin ITO/Au/Au Nanoparticles/n-Si Structure

被引:7
作者
Li, Xinxin [1 ,2 ]
Deng, Zhen [1 ,2 ,3 ]
Ma, Ziguang [1 ,2 ]
Jiang, Yang [1 ,2 ]
Du, Chunhua [1 ,2 ,3 ]
Jia, Haiqiang [1 ,2 ,4 ]
Wang, Wenxin [1 ,2 ,4 ]
Chen, Hong [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices,Beijing, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat & Optoelect Engn, Beijing 100049, Peoples R China
[3] Yangtze River Delta Phys Res Ctr, Liyang 213000, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Au nanoparticle; dark current suppression; enhanced absorption; SWIR; photodetectors; HIGH-PERFORMANCE; HIGH-RESPONSIVITY; ABSORPTION; DETECTOR; GENERATION; NANO;
D O I
10.3390/s22124536
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Plasmonic photodetection based on the hot-electron generation in nanostructures is a promising strategy for sub-band detection due to the high conversion efficiencies; however, it is plagued with the high dark current. In this paper, we have demonstrated the plasmonic photodetection with dark current suppression to create a Si-based broadband photodetector with enhanced performance in the short-wavelength infrared (SWIR) region. By hybridizing a 3 nm Au layer with the spherical Au nanoparticles (NPs) formed by rapid thermal annealing (RTA) on Si substrate, a well-behaved ITO/Au/Au NPs/n-Si Schottky photodetector with suppressed dark current and enhanced absorption in the SWIR region is obtained. This optimized detector shows a broad detection beyond 1200 nm and a high responsivity of 22.82 mA/W at 1310 nm at -1 V, as well as a low dark current density on the order of 10(-5) A/cm(2). Such a Si-based plasmon-enhanced detector with desirable performance in dark current will be a promising strategy for realization of the high SNR detector while keeping fabrication costs low.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Raman Signal Enhancement Tunable by Gold-Covered Porous Silicon Films with Different Morphology [J].
Agafilushkina, Svetlana N. ;
Zukovskaja, Olga ;
Dyakov, Sergey A. ;
Weber, Karina ;
Sivakov, Vladimir ;
Popp, Juergen ;
Cialla-May, Dana ;
Osminkina, Liubov A. .
SENSORS, 2020, 20 (19) :1-11
[2]   High performance, waveguide integrated Ge photodetectors [J].
Ahn, Donghwan ;
Hong, Ching-yin ;
Liu, Jifeng ;
Giziewicz, Wojciech ;
Beals, Mark ;
Kimerling, Lionel C. ;
Michel, Jurgen ;
Chen, Jian ;
Kartner, Franz X. .
OPTICS EXPRESS, 2007, 15 (07) :3916-3921
[3]   High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors [J].
Alavirad, Mohammad ;
Olivieri, Anthony ;
Roy, Langis ;
Berini, Pierre .
OPTICS EXPRESS, 2016, 24 (20) :22544-22554
[4]   Graphene-Si Schottky IR Detector [J].
Amirmazlaghani, Mina ;
Raissi, Farshid ;
Habibpour, Omid ;
Vukusic, Josip ;
Stake, Jan .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2013, 49 (07) :589-594
[5]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[6]   InP-Based High-Speed Photodetectors [J].
Beling, Andreas ;
Campbell, Joe C. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (1-4) :343-355
[7]   GaN metal-semiconductor interface and its applications in GaN and InGaN metal-semiconductor-metal photodetectors [J].
Chiou, YZ ;
Su, YK ;
Chang, SJ ;
Chen, CH .
IEE PROCEEDINGS-OPTOELECTRONICS, 2003, 150 (02) :115-118
[8]   Review of night vision technology [J].
Chrzanowski, K. .
OPTO-ELECTRONICS REVIEW, 2013, 21 (02) :153-181
[9]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]
[10]   Optical gain in silicon nanocrystals [J].
Dal Negro, L ;
Pavesi, L ;
Pucker, G ;
Franzò, G ;
Priolo, F .
OPTICAL MATERIALS, 2001, 17 (1-2) :41-44