Coulomb integrals for Gaussian, Slater, Bessel and polynomial-type functions

被引:7
作者
Rico, JF [1 ]
López, R [1 ]
Ramírez, G [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias C14, Dept Quim Fis Aplicada, E-28049 Madrid, Spain
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2001年 / 537卷
关键词
molecular integrals; shift operators; exponential-type orbitals; polynomial orbitals;
D O I
10.1016/S0166-1280(00)00660-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a unified study of two-center Coulomb integrals, involving Gaussian, Slater. Bessel and polynomial radial factors combined with Cartesian and spherical angular factors, performed with the shift operators technique. The master formula for these integrals appears as a linear combination of polynomials of the relative coordinates of the centers. These polynomials are independent of the type of radial factor, and only three families arise: two corresponding to angular factors of the same type and a mixed one. The coefficients depend on the types of both the angular and radial factors. We consider the 30 most important cases and give simple rules for obtaining them in terms of only six reference integrals. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 46 条
[1]  
Avery J., 1989, Hyperspherical Harmonics: Applications in Quantum Theory
[2]  
AVERY J, 2000, HYPERSPHERICAL HARMO
[3]   MOLECULAR INTEGRALS OVER SLATER ORBITALS [J].
BARNETT, MP .
CHEMICAL PHYSICS LETTERS, 1990, 166 (01) :65-70
[4]  
Barnett MP, 2000, INT J QUANTUM CHEM, V76, P464, DOI 10.1002/(SICI)1097-461X(2000)76:3<464::AID-QUA15>3.0.CO
[5]  
2-E
[6]   MANY CENTER AO INTEGRAL EVALUATION USING CARTESIAN EXPONENTIAL-TYPE ORBITALS (CETOS) [J].
CARBO, R ;
BESALU, E .
ADVANCES IN QUANTUM CHEMISTRY, 1992, 24 :115-237
[7]   AO INTEGRAL EVALUATION USING CARTESIAN EXPONENTIAL TYPE ORBITALS (CETOS) [J].
CARBO, R ;
BESALU, E .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1992, 70 (02) :353-361
[8]  
Condon E. U., 1963, THEORY ATOMIC SPECTR
[9]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI
[10]   NUMERICAL EVALUATION OF MOLECULAR ONE-ELECTRON AND 2-ELECTRON MULTICENTER INTEGRALS WITH EXPONENTIAL-TYPE ORBITALS VIA THE FOURIER-TRANSFORM METHOD [J].
GROTENDORST, J ;
STEINBORN, EO .
PHYSICAL REVIEW A, 1988, 38 (08) :3857-3876