Modular map for the family of abelian surfaces via elliptic K3 surfaces

被引:6
作者
Nagano, Atsuhira [1 ]
Shiga, Hironori [2 ]
机构
[1] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
[2] Chiba Univ, Grad Sch Sci, Inage Ku, Chiba 2638522, Japan
基金
日本学术振兴会;
关键词
Abelian surfaces; K3; surfaces; Hilbert modular forms; period domains; theta constants; FORMS; EQUATIONS;
D O I
10.1002/mana.201300142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give explicit modular maps for the family of abelian surfaces and that of the abelian surfaces whose endomorphism algebra contains Zinverted right perpendicular (1 + root 5)/2inverted left perpendicular. We obtain a description of the Shimura variety for the latter family, also. The notion of the family of K3 surfaces with a fixed marking plays a central role. As the basement of our study we use the expressions of those families given by Clingher-Doran, A. Nagano and the work of A. Kumar as well. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:89 / 114
页数:26
相关论文
共 50 条
[41]   K3 Surfaces of zero entropy admitting an elliptic fibration with only irreducible fibers [J].
Mezzedimi, Giacomo .
JOURNAL OF ALGEBRA, 2021, 587 :344-389
[42]   Explicit Sato-Tate type distribution for a family of K3 surfaces [J].
Saad, Hasan .
FORUM MATHEMATICUM, 2023, 35 (04) :1105-1132
[43]   Hypergeometric groups and dynamics on K3 surfaces [J].
Iwasaki, Katsunori ;
Takada, Yuta .
MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) :835-891
[44]   DEGENERATIONS OF K3 SURFACES OF DEGREE TWO [J].
Thompson, Alan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (01) :219-243
[45]   A gluing construction of projective K3 surfaces [J].
Koike, Takayuki ;
Uehara, Takato .
EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2022, 6
[46]   Embedding pointed curves in K3 surfaces [J].
Hassett, Brendan ;
Tschinkel, Yuri .
MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (3-4) :927-953
[47]   Galois covers between K3 surfaces [J].
Xiao, G .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (01) :73-&
[48]   The field of moduli of singular K3 surfaces [J].
Roberto Laface .
Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 :509-531
[49]   Maximal variation of curves on K3 surfaces [J].
Dutta, Yajnaseni ;
Huybrechts, Daniel .
TUNISIAN JOURNAL OF MATHEMATICS, 2022, 4 (03) :443-464
[50]   Good reduction criterion for K3 surfaces [J].
Matsumoto, Yuya .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) :241-266