Long-range electrothermal fluid motion in microfluidic systems

被引:34
|
作者
Lu, Yi [1 ,2 ]
Ren, Qinlong [1 ]
Liu, Tingting [1 ]
Leung, Siu Ling [2 ,3 ]
Gau, Vincent [4 ]
Liao, Joseph C. [5 ]
Chan, Cho Lik [1 ]
Wong, Pak Kin [1 ,2 ,6 ,7 ,8 ]
机构
[1] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
[2] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
[3] Univ Arizona, Coll Med, Tucson, AZ 85724 USA
[4] GeneFluidics Inc, Irwindale, CA 91010 USA
[5] Stanford Univ, Dept Urol, Stanford, CA 94305 USA
[6] Penn State Univ, Dept Mech, University Pk, PA 16802 USA
[7] Penn State Univ, Dept Nucl Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Milton S Hershey Med Ctr, Dept Surg, Hershey, PA 17033 USA
基金
美国国家卫生研究院;
关键词
AC electrothermal flow; Electrokinetics; Microfluidics; Buoyancy; Computational fluid dynamics; ELECTROKINETICS; ENHANCEMENT; BIOSENSORS; DIAGNOSIS; CELLS;
D O I
10.1016/j.ijheatmasstransfer.2016.03.034
中图分类号
O414.1 [热力学];
学科分类号
摘要
AC electrothermal flow (ACEF) is the fluid motion created as a result of Joule heating induced temperature gradients. ACEF is capable of performing major microfluidic operations, such as pumping, mixing, concentration, separation and assay enhancement, and is effective in biological samples with a wide range of electrical conductivity. Here, we report long-range fluid motion induced by ACEF, which creates centimeter-scale vortices. The long-range fluid motion displays a strong voltage dependence and is suppressed in microchannels with a characteristic length below similar to 300 mu m. An extended computational model of ACEF, which considers the effects of the density gradient and temperature-dependent parameters, is developed and compared experimentally by particle image velocimetry. The model captures the essence of ACEF in a wide range of channel dimensions and operating conditions. The combined experimental and computational study reveals the essential roles of buoyancy, temperature rise, and associated changes in material properties in the formation of the long-range fluid motion. Our results provide critical information for the design and modeling of ACEF based microfluidic systems toward various bioanalytical applications. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:341 / 349
页数:9
相关论文
共 50 条
  • [31] Application of Long-Range Surface Plasmon Resonance for ABO Blood Typing
    Tangkawsakul, Wanida
    Srikhirin, Toemsak
    Shinbo, Kazunari
    Kato, Keizo
    Kaneko, Futao
    Baba, Akira
    INTERNATIONAL JOURNAL OF ANALYTICAL CHEMISTRY, 2016, 2016
  • [32] Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel
    Du, Jiong-Rong
    Juang, Yi-Je
    Wu, Jie-Tang
    Wei, Hsien-Hung
    BIOMICROFLUIDICS, 2008, 2 (04):
  • [33] Intracortical circuits of pyramidal neurons reflect their long-range axonal targets
    Brown, Solange P.
    Hestrin, Shaul
    NATURE, 2009, 457 (7233) : 1133 - U89
  • [34] Long-range exciton diffusion in molecular non-fullerene acceptors
    Firdaus, Yuliar
    Le Corre, Vincent M.
    Karuthedath, Safakath
    Liu, Wenlan
    Markina, Anastasia
    Huang, Wentao
    Chattopadhyay, Shirsopratim
    Nahid, Masrur Morshed
    Nugraha, Mohamad I.
    Lin, Yuanbao
    Seitkhan, Akmaral
    Basu, Aniruddha
    Zhang, Weimin
    McCulloch, Iain
    Ade, Harald
    Labram, John
    Laquai, Frederic
    Andrienko, Denis
    Koster, L. Jan Anton
    Anthopoulos, Thomas D.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [35] Long-Range Control of Renin Gene Expression in Tsukuba Hypertensive Mice
    Ushiki, Aki
    Matsuzaki, Hitomi
    Ishida, Junji
    Fukamizu, Akiyoshi
    Tanimoto, Keiji
    PLOS ONE, 2016, 11 (11):
  • [36] Biomolecular kinetics analysis using long-range surface plasmon waveguides
    Khodami, Maryam
    Berini, Pierre
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 243 : 114 - 120
  • [37] Variational approximation methods for long-range force transmission in biopolymer gels
    Wang, Haiqin
    Xu, Xinpeng
    CHINESE PHYSICS B, 2022, 31 (10)
  • [38] Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media
    Galindo-Rosales, F. J.
    Campo-Deano, L.
    Pinho, F. T.
    van Bokhorst, E.
    Hamersma, P. J.
    Oliveira, M. S. N.
    Alves, M. A.
    MICROFLUIDICS AND NANOFLUIDICS, 2012, 12 (1-4) : 485 - 498
  • [39] Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media
    F. J. Galindo-Rosales
    L. Campo-Deaño
    F. T. Pinho
    E. van Bokhorst
    P. J. Hamersma
    M. S. N. Oliveira
    M. A. Alves
    Microfluidics and Nanofluidics, 2012, 12 : 485 - 498
  • [40] Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria
    Nishiguchi, Daiki
    Nagai, Ken H.
    Chate, Hugues
    Sano, Masaki
    PHYSICAL REVIEW E, 2017, 95 (02)