Perfect sampling from the limit of deterministic products of stochastic matrices

被引:4
作者
Stenflo, Orjan [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2008年 / 13卷
关键词
perfect sampling; stochastic matrices; Markov chain Monte Carlo; iterated function systems;
D O I
10.1214/ECP.v13-1409
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We illustrate how a technique from the theory of random iterations of functions can be used within the theory of products of matrices. Using this technique we give a simple proof of a basic theorem about the asymptotic behavior of (deterministic) "backwards products" of row-stochastic matrices and present an algorithm for perfect sampling from the limiting common row-vector (interpreted as a probability-distribution).
引用
收藏
页码:474 / 481
页数:8
相关论文
共 11 条
[1]  
[Anonymous], SANKHYA
[2]   EXPONENTIAL CONVERGENCE OF PRODUCTS OF STOCHASTIC MATRICES [J].
ANTHONISSE, JM ;
TIJMS, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 59 (02) :360-364
[3]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[4]  
Hajnal J., 1958, MATH PROC CAMBRIDGE, V54, P233, DOI DOI 10.1017/S0305004100033399
[5]  
Kifer Yuri, 1986, Progress in Probability and Statistics, V10
[6]  
Sarymsakov T. A., 1961, Teor. Veroyatnost. i Primenen., V6, P194
[7]  
Seneta E., 1981, Non-negative Matrices and Markov Chains, V2nd
[8]   A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS [J].
THOMASIAN, AJ .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01) :337-&
[9]  
WILSON DB, WEB SITE PERFECTLY R
[10]  
Wolfowitz J, 1963, PAMS, V14, P733, DOI DOI 10.2307/2034984