An Alternative Numerical Method for Finding the Value of Transformation Parameter in the Box-Cox Transformation

被引:0
作者
Watthanacheewakul, Lakhana [1 ]
机构
[1] Maejo Univ, Fac Sci, Chiang Mai, Thailand
来源
INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III | 2010年
关键词
Alternative numerical method; Bisection method; Box-Cox transformation; Transformation parameter;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To analyze non normal data, the data should be transformed to a normal distribution. The well-known Box-Cox transformation can be used to get the normality. Since the transformation parameter is usually unknown, many statisticians studied the methods of estimation of the transformation parameter, lambda , appearing in the Box-Cox transformation. Moreover, we can use the numerical methods for single variable function optimization to find the value of the transformation parameter lambda such as bisection method, Newton's method, secant method, and others. The alternative numerical method lambda is applied to find the suitable value of lambda. It is better than the bisection method in the context of the number of function evaluations and the processing time.
引用
收藏
页码:2066 / 2069
页数:4
相关论文
共 10 条
[1]   Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method [J].
Abbasbandy, S .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) :887-893
[2]   SELECTION OF DATA TRANSFORMATIONS [J].
ANDREWS, DF .
BIOMETRIKA, 1971, 58 (02) :249-&
[3]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[4]  
CARROLL RJ, 1980, J R STAT SOC B, V42, P71
[5]   A NONPARAMETRIC ANALYSIS OF TRANSFORMATIONS [J].
HAN, AK .
JOURNAL OF ECONOMETRICS, 1987, 35 (2-3) :191-209
[6]   POWER TRANSFORMATIONS TO SYMMETRY [J].
HINKLEY, DV .
BIOMETRIKA, 1975, 62 (01) :101-111
[7]  
SCRATON RE, 1984, BASIC NUMERICAL METH
[8]   An improvement on Fibonacci search method in optimization theory [J].
Subasi, M ;
Yildirim, N ;
Yildiz, B .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (03) :893-901
[9]  
Tukey W., 1957, ANN MATH STAT, V23, P525
[10]  
Watthanacheewakul L., 2007, THESIS NATL I DEV AD, P41