Intersections of two stacking faults in zincblende GaN

被引:6
作者
Antos, Zdenek [1 ,2 ,3 ]
Vacek, Petr [1 ,2 ,3 ]
Groger, Roman [1 ,2 ]
机构
[1] Czech Acad Sci, Inst Phys Mat, Zizkova 22, Brno 61600, Czech Republic
[2] Czech Acad Sci, CEITEC IPM, Zizkova 22, Brno 61600, Czech Republic
[3] Brno Univ Technol CEITEC BUT, Cent European Inst Technol, Purkynova 123, Brno 61200, Czech Republic
关键词
Gallium nitride; Zincblende; Stacking fault; Gamma surface; Atomistic simulation; CUBIC GAN; SEMICONDUCTORS; GALLIUM;
D O I
10.1016/j.commatsci.2020.109620
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structure and energetics of an isolated {111} stacking fault and the interactions of two non-coplanar {111} stacking faults in zincblende GaN are investigated using an empirical potential of the Tersoff-Brenner type. For a single stacking fault, a metastable configuration is found only when the fault is created on the {111} plane in the glide set, which results in local transformation into a more stable wurtzite structure. This energetically favorable configuration is separated from the unfaulted crystal by a large energy barrier. Interactions between two stacking faults on non-coplanar {111} planes, where one fault corresponds to the metastable configuration created in the glide set and the second fault is created on a different {111} plane, lead to a reduction of the aforementioned energy barrier and an increase of the energy of the second metastable fault. The intersection of the two faults results in a significant reconstruction of atomic positions around the line common to both faults. Apart from the wurtzite stacking, the structure of this intersection shows a partial transformation into the rocksalt structure that is normally stable only at high pressures. The presence of this high-energy rocksalt structure is avoided if the second fault is non-planar. In this case, four different structures of the intersection exist. We demonstrate that one of these structures agrees well with TEM observations.
引用
收藏
页数:7
相关论文
共 21 条
[1]   An empirical potential approach to wurtzite-zinc-blende polytypism in group III-V semiconductor nanowires [J].
Akiyama, T ;
Sano, K ;
Nakamura, K ;
Ito, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2006, 45 (8-11) :L275-L278
[2]   INTERSECTING STACKING FAULTS IN FACE-CENTERED CUBIC LATTICES [J].
ASHBEE, KHG .
ACTA METALLURGICA, 1967, 15 (07) :1129-&
[3]   Electronic structure of GaN stacking faults [J].
Bandic, ZZ ;
McGill, TC ;
Ikonic, Z .
PHYSICAL REVIEW B, 1997, 56 (07) :3564-3566
[4]   Photoluminescence studies of cubic GaN epilayers [J].
Church, S. A. ;
Hammersley, S. ;
Mitchell, P. W. ;
Kappers, M. J. ;
Sahonta, S. L. ;
Frentrup, M. ;
Nilsson, D. ;
Ward, P. J. ;
Shaw, L. J. ;
Wallis, D. J. ;
Humphreys, C. J. ;
Oliver, R. A. ;
Binks, D. J. ;
Dawson, P. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (08)
[5]   Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy [J].
Dasilva, Yadira Arroyo Rojas ;
Kozak, Roksolana ;
Erni, Rolf ;
Rossell, Marta D. .
ULTRAMICROSCOPY, 2017, 176 :11-22
[6]   Improving radiative recombination efficiency of green light-emitting diodes [J].
Ding, Boning .
MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (14) :1615-1630
[7]   Dislocation motion in silicon: The shuffle-glide controversy [J].
Duesbery, MS ;
Joos, B .
PHILOSOPHICAL MAGAZINE LETTERS, 1996, 74 (04) :253-258
[8]   X-ray diffraction analysis of cubic zincblende III-nitrides [J].
Frentrup, Martin ;
Lee, Lok Yi ;
Sahonta, Suman-Lata ;
Kappers, Menno J. ;
Massabuau, Fabien ;
Gupta, Priti ;
Oliver, Rachel A. ;
Humphreys, Colin J. ;
Wallis, David J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (43)
[9]   A simple calculation of energy changes upon stacking fault formation or local crystalline phase transition in semiconductors [J].
Glas, Frank .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (09)
[10]   Structure and stability of threading edge and screw dislocations in bulk GaN [J].
Groeger, Roman ;
Leconte, Lucien ;
Ostapovets, Andriy .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 99 :195-202