La0.9Sr0.1Ga0.8Mg0.2O3-δ-La0.6Sr0.4Co0.2Fe0.8O3-θ composite cathodes for intermediate-temperature solid oxide fuel cells

被引:33
|
作者
Lin, Yuanbo [1 ]
Barnett, Scott A. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
solid oxide fuel cell; composite cathode; La0.9Sr0.1Ga0.8Mg0.1O3-delta; La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O3-theta; impedance spectroscopy;
D O I
10.1016/j.ssi.2008.02.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid oxide fuel cells with thin La(0.9)gSr(0.1)Ga(0.8)Mg(0.1)O(3-delta) (LSGM) electrolytes have the potential to provide high power densities down to at least 600 degrees C. The present study was on a candidate cathode material for such SOFCs: composites containing La0.6Sr0.4Co0.2Fe0.8O3-theta (LSCF) and LSGM. Symmetrical cathodes with LSCF contents of 30-70 wt.% were fired at temperatures from 1000 to 1300 degrees C on both sides of bulk LSGM electrolytes. No secondary phases were detected by X-ray diffraction for the firing temperatures tested. Cathode polarization resistance R-p, measured using impedance spectroscopy, varied little with firing temperature despite substantial changes in cathode microstructure as observed by scanning electron microscopy. R-p varied only slightly with LSCF content, reaching a minimum of similar to 0.18 Ohm.cm(2) at 650 degrees C for 40-60 wt.% LSCF fired at 1100 degrees C. The R-p value was stable over several hundred hours at a current density of 0.5 A/cm(2). The temperature dependence of R-p 20 yielded an activation energy of approximate to 1.7 eV for all compositions. Measurements versus oxygen partial pressure P-O yielded R-p infinity P-O2(0.20). SOFCs with LSCF-LSGM cathodes and thin LSGM electrolytes yielded a maximum power density of 0.57 W/cm(2) at 650 degrees C. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:420 / 427
页数:8
相关论文
共 50 条
  • [31] Preparation and characterization of graded cathode La0.6Sr0.4Co0.2Fe0.8O3-δ
    Liu, Ze
    Han, Min-Fang
    Miao, Wen-Ting
    JOURNAL OF POWER SOURCES, 2007, 173 (02) : 837 - 841
  • [32] Improving the stability of La0.6Sr0.4Co0.2Fe0.8O3-δ electrode for solid oxide fuel cells by introducing sintering inhibitors
    Hu, Can
    Duan, Li
    Pan, Zehua
    Gao, Yan
    Zang, Jiadong
    Fu, Wenhao
    Lu, Wenlong
    Zhong, Zheng
    Zhang, Haibo
    Yan, Zilin
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 37419 - 37429
  • [33] Performance assessment of Bi0.3Sr0.7Co0.3Fe0.7O3-δ-LSCF composite as cathode for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte
    Khaerudini, Deni S.
    Guan, Guoqing
    Zhang, Peng
    Hao, Xiaogang
    Wang, Zhongde
    Xue, Chunfeng
    Kasai, Yutaka
    Abudula, Abuliti
    JOURNAL OF POWER SOURCES, 2015, 298 : 269 - 279
  • [34] Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
    Solovyev, A. A.
    Ionov, I. V.
    Shipilova, A. V.
    Maloney, P. D.
    JOURNAL OF ELECTROCERAMICS, 2018, 40 (02) : 150 - 155
  • [35] The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction
    Oishi, Junya
    Otomo, Junichiro
    Oshima, Yoshito
    Koyama, Michihisa
    JOURNAL OF POWER SOURCES, 2015, 277 : 44 - 51
  • [37] La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by three different methods for solid oxide fuel cells
    Shen, Fengyu
    Lu, Kathy
    JOURNAL OF POWER SOURCES, 2015, 296 : 318 - 326
  • [38] (La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3)x-modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells
    Y. J. Leng
    S. H. Chan
    K. A. Khor
    S. P. Jiang
    Journal of Solid State Electrochemistry, 2006, 10 : 339 - 347
  • [39] (La0.8Sr0.2)0.9MnO3-Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3)x-modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells
    Leng, YJ
    Chan, SH
    Khor, KA
    Jiang, SP
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (06) : 339 - 347
  • [40] Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.8Ge0.2O2-x composite cathode for IT-SOFCs
    Esquirol, A
    Kilner, J
    Brandon, N
    SOLID STATE IONICS, 2004, 175 (1-4) : 63 - 67