On the Existence of Solutions and Tikhonov Regularization of Hemivariational Inequality Problems

被引:5
作者
Tang, Guo-ji [1 ,2 ]
Wan, Zhongping [1 ]
Wang, Xianfu [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Guangxi Univ Nationalities, Sch Sci, Guangxi 530006, Peoples R China
[3] Univ British Columbia, Dept Math, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Hemivariational inequality; KKM mapping; Tikhonov regularization; Existence; Coercivity condition; VARIATIONAL INEQUALITY; WELL-POSEDNESS;
D O I
10.1007/s10013-019-00362-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the existence of solution and Tikhonov regularization theory for a class of hemivariational inequalities. We give the existence of solutions for the class of hemivariational inequalities when the mappings satisfy the so-called hemivariational inequality property and a rather weak coercivity condition. The existence result allows us to deduce the Tikhonov regularization result. Our results generalize some results by He (Abstr. Appl. Anal.2012, 172061,2012) and others.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 35 条
[1]   The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities [J].
Alleche, Boualem ;
Radulescu, Vicentiu D. ;
Sebaoui, Madjid .
OPTIMIZATION LETTERS, 2015, 9 (03) :483-503
[2]  
[Anonymous], 2009, SET VALUED ANAL
[3]   Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities [J].
Bianchi, M ;
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (01) :1-17
[4]  
Carl S, 2007, SPRINGER MONOGR MATH, P1
[5]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[6]   Hartman-Stampacchia results for stably pseudomonotone operators and non-linear hemivariational inequalities [J].
Costea, Nicusor ;
Radulescu, Vicentiu .
APPLICABLE ANALYSIS, 2010, 89 (02) :175-188
[7]  
Facchinei F, 2003, Springer Series in Operations Research, VI and II
[9]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[10]   Solvability of variational inequality problems [J].
Han, J ;
Huang, ZH ;
Fang, SC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (03) :501-520