TS-MULE: Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models

被引:16
作者
Schlegel, Udo [1 ]
Duy Lam Vo [1 ]
Keim, Daniel A. [1 ]
Seebacher, Daniel [1 ]
机构
[1] Univ Konstanz, Constance, Germany
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021, PT I | 2021年 / 1524卷
基金
欧盟地平线“2020”;
关键词
Explainable AI; LIME; Time series; LEARNING-MODELS;
D O I
10.1007/978-3-030-93736-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is a demanding task ranging from weather to failure forecasting with black-box models achieving state-of-the-art performances. However, understanding and debugging are not guaranteed. We propose TS-MULE, a local surrogate model explanation method specialized for time series extending the LIME approach. Our extended LIME works with various ways to segment and perturb the time series data. In our extension, we present six sampling segmentation approaches for time series to improve the quality of surrogate attributions and demonstrate their performances on three deep learning model architectures and three common multivariate time series datasets.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 22 条
  • [1] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [2] Chuah MC, 2007, LECT NOTES COMPUT SC, V4743, P123
  • [3] European Union, 2018, EUR GEN DAT PROT REG
  • [4] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [5] Agnostic local explanation for time series classification
    Guilleme, Mael
    Masson, Veronique
    Roze, Laurence
    Termier, Alexandre
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 432 - 439
  • [6] Gunning D., 2016, EXPLAINABLE ARTIFICI
  • [7] Lin Jessica, 2003, P 8 ACM SIGMOD WORKS, P2, DOI [DOI 10.1145/882082.882086, 10.1145/882082.882086]
  • [8] Lundberg SM, 2017, ADV NEUR IN, V30
  • [9] Yeh CCM, 2016, IEEE DATA MINING, P1317, DOI [10.1109/ICDM.2016.89, 10.1109/ICDM.2016.0179]
  • [10] Montgomery D., 2015, Wiley Series in Probability and Statistics