A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION

被引:84
作者
Andric, Maja [1 ]
Farid, Ghulam [2 ]
Pecaric, Josip [3 ,4 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Matice Hrvatske 15, Split 21000, Croatia
[2] COMSATS Inst Informat Technol, Attock Campus, Attock, Pakistan
[3] Fac Text Technol, Prilaz Baruna Filipovica 28A, Zagreb 10000, Croatia
[4] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
关键词
Mittag-Leffler function; Opial's inequality; fractional calculus;
D O I
10.1515/fca-2018-0072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an extended generalized Mittag-Leffler function E-rho,sigma,tau(delta,r,q,c) (z; p) and the corresponding fractional integral operator epsilon(w,delta,q,r,c)(a+,rho,sigma,tau,) f are defined and used to obtain generalizations of Opial-type inequalities due to Mitrinovic and Pecaric. Also, some interesting properties of this function and its integral operator are discussed. Several known results are deduced.
引用
收藏
页码:1377 / 1395
页数:19
相关论文
共 17 条
[1]   A SURVEY OF USEFUL INEQUALITIES IN FRACTIONAL CALCULUS [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) :574-594
[2]  
Anastassiou G. A., 2009, Fractional Differentiation Inequalities
[3]  
Andri~c M., 2014, NONLINEAR FUNCT ANAL, V19, P563
[4]  
Andric M., 2015, MONOGRAPHS INEQUALIT, V10
[5]  
Andric M., 2015, FRACT DIFFER CALC, V5, P25, DOI [https://doi.org/10.7153/fdc-05-03, DOI 10.7153/FDC-05-03]
[6]   Opial-type inequality due to Agarwal-Pang and fractional differential inequalities [J].
Andric, Maja ;
Barbir, Ana ;
Farid, Ghulam ;
Pecaric, Josip .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (04) :324-335
[7]  
[Anonymous], 2006, THEORY APPL FRACTION
[8]  
[Anonymous], 2012, J. Fract. Calc. Appl
[9]  
[Anonymous], FRACT DIFFER CALC
[10]   Extended hypergeometric and confluent hypergeornetric functions [J].
Chaudhry, MA ;
Qadir, A ;
Srivastava, HM ;
Paris, RB .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :589-602