NEW BOUNDS OF MUTUALLY UNBIASED MAXIMALLY ENTANGLED BASES IN Cd ⊗ Ckd

被引:0
作者
Cheng, Xiaoya [1 ,2 ]
Shang, Yun [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Key Lab Management, Decis & Informat Syst, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
mutually unbiased bases; maximally entangled states; Pauli matrices; mutually orthogonal Latin squares;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mutually unbiased bases which is also maximally entangled bases is called mutually unbiased maximally entangled bases (MUMEBs). We study the construction of MUMEBs in bipartite system. In detail, we construct 2(p(a) - 1) MUMEBs in C-d circle times C-d by properties of Cuss sums for arbitrary odd d. It improves the known lower bound p(a) - 1 for odd d. Certainly, it also generalizes the lower bound 2(p(a) - 1) for d being a single prime power. Furthermore, we construct MUMEBs in C-d circle times C-kd for general k >= 2 and odd d. We get the similar lower bounds as k, b are both single prime powers. Particularly, when k is a square number, by using mutually orthogonal Latin squares, we can construct more MUMEBs in C-d circle times C-kd, and obtain greater lower bounds than reducing the problem into prime power dimension in some cases.
引用
收藏
页码:1152 / 1164
页数:13
相关论文
共 25 条
  • [1] Abel R. J. R., 1996, CRC DISCR MATH APPL, P111
  • [2] The mean king's problem: Spin 1
    Aharonov, Y
    Englert, BG
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2): : 16 - 19
  • [3] [Anonymous], 1998, Gauss and Jacobi Sums
  • [4] [Anonymous], 2017, J SHANXI DATONG XUEB, V33, P16
  • [5] Unextendible product bases and bound entanglement
    Bennett, CH
    DiVincenzo, DP
    Mor, T
    Shor, PW
    Smolin, JA
    Terhal, BM
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (26) : 5385 - 5388
  • [6] Beth T., 1999, ENCY MATH ITS APPL, VI
  • [7] Brierley S., 2009, QUANTPH09102578
  • [8] Security of quantum key distribution using d-level systems -: art. no. 127902
    Cerf, NJ
    Bourennane, M
    Karlsson, A
    Gisin, N
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (12) : 4 - 127902
  • [9] Unextendible maximally entangled bases and mutually unbiased bases
    Chen, Bin
    Fei, Shao-Ming
    [J]. PHYSICAL REVIEW A, 2013, 88 (03):
  • [10] Durt T., 2004, QUANTPH0401046