Toward automatic phenotyping of developing embryos from videos

被引:177
作者
Ning, F
Delhomme, D
LeCun, Y
Piano, F
Bottou, L
Barbano, PE
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[2] Ecole Cent Paris, F-92295 Chatenay Malabry, France
[3] NYU, Dept Biol, New York, NY 10003 USA
[4] NEC Labs Amer, Princeton, NJ 08540 USA
[5] Yale Univ, Dept Appl Math, New Haven, CT 06520 USA
关键词
convolutional network; energy-based model; image segmentation; nonlinear filter;
D O I
10.1109/TIP.2005.852470
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a trainable system for analyzing videos of developing C. elegans embryos. The system automatically detects, segments, and locates cells and nuclei in microscopic images. The system was designed as the central component of a fully automated phenotyping system. The system contains three modules 1) a convolutional network trained to classify each pixel into five categories. cell wall, cytoplasm, nucleus membrane, nucleus, outside medium; 2) an energy-based model, which cleans up the output of the convolutional network by learning local consistency constraints that must be satisfied by label images; 3) a set of elastic models of the embryo at various stages of development that are matched to the label images.
引用
收藏
页码:1360 / 1371
页数:12
相关论文
共 40 条
[1]  
ABRANTES AJ, 1993, P IEEE C NEUR NETW S, P251
[2]  
[Anonymous], 2001, P INT C MACH LEARN
[3]  
[Anonymous], 1998, NEURAL NETWORKS TRIC
[4]  
[Anonymous], 1998, SCIENCE, V282, P2012
[5]  
BENGIO Y, 1994, P 12 ICPR JER OCT, V2, P409
[6]  
Boland MV, 1998, CYTOMETRY, V33, P366
[7]  
CHOPRA S, 2005, COMP VIS PATT REC C
[8]   Automatic identification of subcellular phenotypes on human cell arrays [J].
Conrad, C ;
Erfle, H ;
Warnat, P ;
Daigle, N ;
Lörch, T ;
Ellenberg, J ;
Pepperkok, R ;
Eils, R .
GENOME RESEARCH, 2004, 14 (06) :1130-1136
[9]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[10]   Convolutional face finder: A neural architecture for fast and robust face detection [J].
Garcia, C ;
Delakis, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (11) :1408-1423