In this work, we investigate the existence of analytic solutions of static scalar fields on Lifshitz spacetimes. We evade Derrick's theorem on curved spacetimes by breaking general covariance and use first-order formalism to obtain solutions with finite energy related to the time-translational invariance of the background geometry along with the energy-momentum tensor of the model. We show that such solutions exist and are stable in systems where the Lifshitz background geometry is fixed and the self-interaction potential of the scalar field explicitly depends on the radial coordinate present in the metric.
机构:
Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Univ Durham, Dept Math Sci, Ctr Particle Theory, Durham DH1 3LE, EnglandUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Andrade, Tomas
;
Ross, Simon F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Math Sci, Ctr Particle Theory, Durham DH1 3LE, EnglandUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
机构:
Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Univ Durham, Dept Math Sci, Ctr Particle Theory, Durham DH1 3LE, EnglandUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
Andrade, Tomas
;
Ross, Simon F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Durham, Dept Math Sci, Ctr Particle Theory, Durham DH1 3LE, EnglandUniv Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA