THE 3D COMPRESSIBLE VISCOELASTIC FLUID IN A BOUNDED DOMAIN

被引:7
作者
Chen, Qing [1 ]
Wu, Guochun [2 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Fujian, Peoples R China
[2] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscoelastic fluid; global existence; bounded domain; exponential convergence rates; GLOBAL EXISTENCE; WELL-POSEDNESS; CRITICAL SPACES; DECAY-RATES; TIME-DECAY; EQUATIONS; SYSTEM; FLOWS; MODEL;
D O I
10.4310/CMS.2018.v16.n5.a6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global existence and uniqueness of strong solution for the 3D compressible viscoelastic fluid in a bounded domain under the condition that the initial data are close to the constant equilibrium state. Based on the standard energy estimate, the estimation of the exponential convergence rates of the strong solution is also obtained.
引用
收藏
页码:1303 / 1323
页数:21
相关论文
共 40 条
[1]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[2]   The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions [J].
Chen, Yemin ;
Zhang, Ping .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) :1793-1810
[3]  
DAFERMOS CM, 2005, GRUND MATH WISS, P325
[4]  
Evans L., 1998, GRADUATE STUDIES MAT, V19
[5]   Global Existence in Critical Spaces for Density-Dependent Incompressible Viscoelastic Fluids [J].
Fang, Daoyuan ;
Han, Bin ;
Zhang, Ting .
ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) :51-80
[6]  
Gurtin M.E., 1981, MATH SCI ENG, V158
[7]   GLOBAL WELL-POSEDNESS FOR VISCOELASTIC FLUID SYSTEM IN BOUNDED DOMAINS [J].
He, Lingbing ;
Xu, Li .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) :2610-2625
[8]   Global Solutions to Repulsive Hookean Elastodynamics [J].
Hu, Xianpeng ;
Masmoudi, Nader .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (01) :543-590
[9]   Global Solutions of Two-Dimensional Incompressible Viscoelastic Flows with Discontinuous Initial Data [J].
Hu, Xianpeng ;
Lin, Fanghua .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (02) :372-404
[10]   THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE COMPRESSIBLE VISCOELASTIC FLOWS [J].
Hu, Xianpeng ;
Wang, Dehua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) :917-934