Quantized Electron Transport Through Graphene Nanoconstrictions

被引:8
作者
Clerico, Vito [1 ]
Delgado-Notario, Juan A. [1 ]
Saiz-Bretin, Marta [2 ]
Hernandez Fuentevilla, Cristina [1 ]
Malyshev, Andrey V. [2 ]
Lejarreta, Juan D. [1 ]
Diez, Enrique [1 ]
Dominguez-Adame, Francisco [2 ]
机构
[1] Univ Salamanca, NANOLAB, Dept Fis Fundamental, E-37008 Salamanca, Spain
[2] Univ Complutense, GISC, Dept Fis Mat, E-28040 Madrid, Spain
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2018年 / 215卷 / 19期
关键词
electron transport; graphene; nanostructures; quantized conductance; QUANTUM CONFINEMENT; CONDUCTANCE; SUPPRESSION;
D O I
10.1002/pssa.201701065
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, the quantization of Dirac fermions in lithographically defined graphene nanoconstrictions is studied. Quantized conductance is observed in single nanoconstrictions fabricated on top of a thin hexamethyldisilazane layer over a Si/SiO2 wafer. This nanofabrication method allows to obtain well defined edges in the nanoconstrictions, thus reducing the effects of edge roughness on the conductance. The occurrence of ballistic transport is proved and several size quantization plateaus are identified in the conductance at low temperature. Experimental data and numerical simulations show good agreement, demonstrating that the smoothening of the plateaus is not related to edge roughness but to quantum interference effects.
引用
收藏
页数:6
相关论文
共 58 条
  • [1] Electronic Transport in Asymmetric Graphene Superlattice with Internal Potential Well
    Ban, Yue
    Wang, Li-Gang
    Chen, Xi
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2015, 84 (06)
  • [2] Exceptional ballistic transport in epitaxial graphene nanoribbons
    Baringhaus, Jens
    Ruan, Ming
    Edler, Frederik
    Tejeda, Antonio
    Sicot, Muriel
    Taleb-Ibrahimi, Amina
    Li, An-Ping
    Jiang, Zhigang
    Conrad, Edward H.
    Berger, Claire
    Tegenkamp, Christoph
    de Heer, Walt A.
    [J]. NATURE, 2014, 506 (7488) : 349 - 354
  • [3] Persistent currents in absence of magnetic field in graphene nanorings: The ambiguous role of inter valley scattering
    Benjamin, Colin
    Jayannavar, A. M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (05)
  • [4] Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate
    Bischoff, D.
    Libisch, F.
    Burgdoerfer, J.
    Ihn, T.
    Ensslin, K.
    [J]. PHYSICAL REVIEW B, 2014, 90 (11)
  • [5] Resonant tunnelling and negative differential conductance in graphene transistors
    Britnell, L.
    Gorbachev, R. V.
    Geim, A. K.
    Ponomarenko, L. A.
    Mishchenko, A.
    Greenaway, M. T.
    Fromhold, T. M.
    Novoselov, K. S.
    Eaves, L.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [6] Conductance quantization suppression in the quantum Hall regime
    Caridad, Jose M.
    Power, Stephen R.
    Lotz, Mikkel R.
    Shylau, Artsem A.
    Thomsen, Joachim D.
    Gammelgaard, Lene
    Booth, Timothy J.
    Jauho, Antti-Pekka
    Boggild, Peter
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [7] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [8] Improvement of graphene field-effect transistors by hexamethyldisilazane surface treatment
    Chowdhury, Sk. Fahad
    Sonde, Sushant
    Rahimi, Somayyeh
    Tao, Li
    Banerjee, Sanjay
    Akinwande, Deji
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (03)
  • [9] Spin-dependent terahertz oscillator based on hybrid graphene superlattices
    Diaz, E.
    Miralles, K.
    Dominguez-Adame, F.
    Gaul, C.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (10)
  • [10] Tuning the Fermi velocity in Dirac materials with an electric field
    Diaz-Fernandez, A.
    Chico, Leonor
    Gonzalez, J. W.
    Dominguez-Adame, F.
    [J]. SCIENTIFIC REPORTS, 2017, 7