The effect of line edge roughness defect on the electronic transport properties of Boron-doped graphene nanoribbon rectifier

被引:4
作者
Golzani, Mozhgan [1 ]
Poliki, Mohammad [1 ]
Haji-Nasiri, Saeed [1 ]
机构
[1] Islamic Azad Univ, Fac Elect Biomed & Mechatron Engn, Qazvin Branch, Qazvin, Iran
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2020年 / 126卷 / 04期
关键词
AGNR; Boron doping; Rectifier; LER; Transport properties; PHOSPHORENE NANORIBBONS; RECTIFICATION; MAGNETORESISTANCE; DEVICES; DIODE;
D O I
10.1007/s00339-020-3437-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A rectifying behavior is achieved by means of boron doping in defected armchair graphene nanoribbon (AGNR). In the proposed AGNR device, the effect of line edge roughness (LER) is investigated on the electronic and transport characteristics. Moreover, the width of AGNR is changed by 6, 7 and 8 atoms in the fixed length, and the position of the boron doping is changed in the center or edge of the left electrode. The electronic features of the devices are analyzed through density function theory and non-equilibrium Green's function method. The LER defect and any change in the doping position or the width of AGNR affect the energy alignments, molecular orbital levels, transfer functions and density of states (DOS) that lead to a change in the rectifying behavior of the device. Without the LER defect, rectifying ratio at the ribbon width of 7w in the presence of boron doping at the center, and edge is achieved 16 and 5.88, respectively. But interestingly, by considering the LER defect in the same situation these values increase to 362 and 102, respectively.
引用
收藏
页数:10
相关论文
共 54 条
[1]  
[Anonymous], 2018, COMMUN PHYS-UK, DOI DOI 10.15625/0868-3166/28/3/12670
[2]  
[Anonymous], AT TOOLKIT VERS 2016
[3]   Enforced Planarity: A Strategy for Stable Boron-Containing p-Conjugated Materials [J].
Araneda, Juan F. ;
Neue, Benedikt ;
Piers, Warren E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9977-9979
[4]   Macroscopic graphene membranes and their extraordinary stiffness [J].
Booth, Tim J. ;
Blake, Peter ;
Nair, Rahul R. ;
Jiang, Da ;
Hill, Ernie W. ;
Bangert, Ursel ;
Bleloch, Andrew ;
Gass, Mhairi ;
Novoselov, Kostya S. ;
Katsnelson, M. I. ;
Geim, A. K. .
NANO LETTERS, 2008, 8 (08) :2442-2446
[5]   Electronic Properties of Substitutionally Boron-Doped Graphene Nanoribbons on a Au(111) Surface [J].
Carbonell-Sanroma, Eduard ;
Garcia-Lekue, Aran ;
Corso, Martina ;
Vasseur, Guillaume ;
Brandimarte, Pedro ;
Lobo-Checa, Jorge ;
de Oteyza, Dimas G. ;
Li, Jingcheng ;
Kawai, Shigeki ;
Saito, Shohei ;
Yamaguchi, Shigehiro ;
Enrique Ortega, J. ;
Sanchez-Portal, Daniel ;
Ignacio Pascual, Jose .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (28) :16092-16099
[6]   Spin-dependent transport properties in covalent-organic molecular device with graphene nanoribbon electrodes [J].
Chen, Wei ;
Mao, Weiwei ;
Bian, Baoan ;
Xu, Ning ;
Chen, Runfeng ;
Li, Xing-ao ;
Wang, Lianhui .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2016, 1091 :85-91
[7]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[8]   Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons [J].
Cloke, Ryan R. ;
Marangoni, Tomas ;
Nguyen, Giang D. ;
Joshi, Trinity ;
Rizzo, Daniel J. ;
Bronner, Christopher ;
Cao, Ting ;
Louie, Steven. G. ;
Crommie, Michael F. ;
Fischer, Felix R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (28) :8872-8875
[9]   Human antigen presenting cell gene array profiling of the effect of human T cell leukemia virus type 1 Tax protein on dendritic cells [J].
Datta, Suman ;
Jain, Pooja ;
Ahuja, Jaya ;
Wigdahl, Brian .
RETROVIROLOGY, 2005, 2 (Suppl 1)
[10]   Selective interface transparency in graphene nanoribbon based molecular junctions [J].
Dou, K. P. ;
Kaun, C. C. ;
Zhang, R. Q. .
NANOSCALE, 2018, 10 (10) :4861-4864