Stability and almost periodicity of solutions of ill-posed abstract Cauchy problems

被引:12
作者
deLaubenfels, R
Phong, VQ
机构
关键词
primary; 47D06;
D O I
10.1090/S0002-9939-97-03575-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give simple spectral sufficient conditions for a solution of the linear abstract Cauchy problem, on a Banach space, to be strongly stable or asymptotically almost periodic, without assuming that the associated operator generates a C-0-semigroup.
引用
收藏
页码:235 / 241
页数:7
相关论文
共 18 条
[1]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[2]   STABILITY OF INDIVIDUAL ELEMENTS UNDER ONE-PARAMETER SEMIGROUPS [J].
BATTY, CJK ;
PHONG, VQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 322 (02) :805-818
[3]   LAPLACE AND LAPLACE-STIELTJES SPACE [J].
DELAUBENFELS, R ;
KANTOROVITZ, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 116 (01) :1-61
[4]  
deLaubenfels R., 1994, Lecture Notes in Mathematics, V1570
[5]   APPLICATIONS OF ALMOST PERIODIC COMPACTIFICATIONS [J].
DELEEUW, K ;
GLICKSBERG, I .
ACTA MATHEMATICA, 1961, 105 (1-2) :63-97
[6]   ASYMPTOTIC-BEHAVIOR OF INTEGRATED SEMIGROUPS [J].
ELMENNAOUI, O .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 54 (03) :351-369
[7]  
Esterle J., 1992, J OPERAT THEOR, V28, P203
[8]  
Goldstein J. A., 1985, SEMIGROUPS LINEAR OP
[9]  
HUANG SZ, 1995, STUD MATH, V116, P23
[10]   THE HILLE-YOSIDA SPACE OF AN ARBITRARY OPERATOR [J].
KANTOROVITZ, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 136 (01) :107-111