Invariants of translation surfaces

被引:35
作者
Hubert, P
Schmidt, TA
机构
[1] Inst Math Luminy, F-13288 Marseille 09, France
[2] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
关键词
flat surfaces; Teichmuller disks; billiards;
D O I
10.5802/aif.1829
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We definite invariants of translation surfaces which refine Veech groups. These aid in exact determination of Veech groups. We give examples where two surfaces of isomorphic Vecch group cannot even share a common tree of balanced affine coverings. We also show that there exist translation surfaces of isomorphic Veech groups which cannot affinely cover any common surface. We also extend a result of Gutkin and Judge and thereby give the first examples of noncompact Fuchsian groups which cannot appear as Veech groups. We give an infinite family of these.
引用
收藏
页码:461 / +
页数:36
相关论文
共 35 条
[1]  
[Anonymous], 1996, USPEKHI MAT NAUK
[2]  
[Anonymous], 1992, GEOM FUNCT ANAL, DOI DOI 10.1007/BF01896876
[3]  
ARNOUX P, 1991, CR ACAD SCI I-MATH, V312, P241
[4]  
ARNOUX P, IN PRESS J ANAL MATH
[5]  
ARNOUX P, 1988, ASTERISIQUE, V203, P161
[6]  
BEARDON A, 1984, GRAD TEXT MATH, V91
[7]  
BIRKENHAKE C, 1992, GRUNDLEHREN MATH, V302
[8]   An extension of Lagrange's theorem to interval exchange transformations over quadratic fields [J].
Boshernitzan, MD ;
Carroll, CR .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 72 (1) :21-44
[9]  
Conway JH, 1996, OHIO ST U M, V4, P327
[10]  
Earle C J., 1997, CONT MATH, V201, P165, DOI DOI 10.1090/CONM/201/02618