Iron-sulfur proteins are the major source of protein-bound dinitrosyl iron complexes formed in Escherichia coli cells under nitric oxide stress

被引:42
作者
Landry, Aaron P. [1 ]
Duan, Xuewu [1 ]
Huang, Hao [1 ]
Ding, Huangen [1 ]
机构
[1] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
基金
美国国家卫生研究院;
关键词
Nitric oxide; Iron-sulfur clusters; Chelatable iron pool; Dinitrosyl iron complex; Free radicals; 4FE-4S CLUSTER; DIHYDROXYACID DEHYDRATASE; ACTIVATED MACROPHAGES; RESONANCE DETECTION; CHELATABLE IRON; S-NITROSATION; DNA-BINDING; FNR; NITROGEN; TARGET;
D O I
10.1016/j.freeradbiomed.2011.03.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not proteins without iron-sulfur clusters, are modified, forming protein-bound DNICs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of the "chelatable iron pool" in wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of the chelatable iron pool in cells. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1582 / 1590
页数:9
相关论文
共 68 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]   Fe-S cluster proteins are intracellular targets for nitric oxide generated luminally at the gastro-oesophageal junction [J].
Asanuma, K. ;
Iijima, K. ;
Ara, N. ;
Koike, T. ;
Yoshitake, J. ;
Ohara, S. ;
Shimosegawa, T. ;
Yoshimura, T. .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2007, 16 (04) :395-402
[3]   S-NITROSATION OF SERUM-ALBUMIN BY DINITROSYL-IRON COMPLEX [J].
BOESE, M ;
MORDVINTCEV, PI ;
VANIN, AF ;
BUSSE, R ;
MULSCH, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (49) :29244-29249
[4]   Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide [J].
Bosworth, Charles A. ;
Toledo, Jose C., Jr. ;
Zmijewski, Jaroslaw W. ;
Li, Qian ;
Lancaster, Jack R., Jr. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (12) :4671-4676
[5]   Non-heme iron nitrosyls in biology [J].
Butler, AR ;
Megson, IL .
CHEMICAL REVIEWS, 2002, 102 (04) :1155-1165
[6]   The iron regulatory proteins: Targets and modulators of free radical reactions and oxidative damage [J].
Cairo, G ;
Recalcati, S ;
Pietrangelo, A ;
Minotti, G .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (12) :1237-1243
[7]   Nitric oxide formation by Escherichia coli -: Dependence on nitrite reductase, the NO-sensing regulator FNR, and flavohemoglobin Hmp [J].
Corker, H ;
Poole, RK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (34) :31584-31592
[8]   NO sensing by FNR:: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp [J].
Cruz-Ramos, H ;
Crack, J ;
Wu, GG ;
Hughes, MN ;
Scott, C ;
Thomson, AJ ;
Green, J ;
Poole, RK .
EMBO JOURNAL, 2002, 21 (13) :3235-3244
[9]   Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator [J].
Ding, HG ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5146-5150
[10]   Interplay between NO and [Fe-S] clusters: Relevance to biological systems [J].
Drapier, JC .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1997, 11 (03) :319-329