The Number of Limit Cycles Bifurcating from a Quadratic Reversible Center

被引:0
作者
Liang, Feng [1 ]
Liu, Yeqing [1 ]
Chen, Chong [1 ]
机构
[1] Anhui Normal Univ, Inst Math, Wuhu 241000, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 13期
基金
中国国家自然科学基金;
关键词
Melnikov function; limit cycle; reversible center; SYSTEMS; CYCLICITY;
D O I
10.1142/S0218127421501923
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the first order Melnikov function method with multiple parameters presented in [Han & Xiong, 2014], we prove that 2[n+1/2 ] limit cycles can bifurcate from the quadratic reversible center (x) over dot = y(1 - x), (y) over dot = -x(1 - x) under nth degree polynomial perturbations for n >= 3. Our result in this paper improves the existing lower bound on the maximal number of limit cycles bifurcating from quadratic reversible centers inside the polynomial differential systems of degree n which is 4 (resp., n) when n = 2 (resp., n >= 3).
引用
收藏
页数:18
相关论文
共 18 条
[1]   The third order Melnikov function of a quadratic center under quadratic perturbations [J].
Buica, Adriana ;
Gasull, Armengol ;
Yang, Jiazhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :443-454
[2]   A unified proof on the weak Hilbert 16th problem for n=2 [J].
Chen, F ;
Li, CZ ;
Llibre, J ;
Zhang, ZH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) :309-342
[3]   Quadratic double centers and their perturbations [J].
Francoise, Jean-Pierre ;
Yang, Peixing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 271 :563-593
[4]   Limit cycles appearing from the perturbation of a system with a multiple line of critical points [J].
Gasull, Armengol ;
Li, Chengzhi ;
Torregrosa, Joan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) :278-285
[5]  
Han M., 2021, J NONLINEAR MODEL AN, V3, P13, DOI DOI 10.12150/JNMA.2021.13
[6]   Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters [J].
Han, Maoan ;
Xiong, Yanqin .
CHAOS SOLITONS & FRACTALS, 2014, 68 :20-29
[7]   Perturbations of quadratic centers [J].
Iliev, ID .
BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (02) :107-161
[8]   Linear estimate for the number of zeros of Abelian integrals for quadratic isochronous centres [J].
Li, CZ ;
Li, WG ;
Llibre, J ;
Zhang, ZF .
NONLINEARITY, 2000, 13 (05) :1775-1800
[9]   LIMIT CYCLE BIFURCATIONS OF A PLANAR NEAR-INTEGRABLE SYSTEM WITH TWO SMALL PARAMETERS [J].
Liang, Feng ;
Han, Maoan ;
Jiang, Chaoyuan .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (04) :1034-1056
[10]   Limit cycles bifurcated from a class of quadratic reversible center of genus one [J].
Liang, Haihua ;
Zhao, Yulin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) :240-254