Gasification of lignocellulosic biomass to produce syngas in a 50 kW downdraft reactor

被引:30
作者
Monir, Minhaj Uddin [1 ,2 ]
Abd Aziz, Azrina [1 ]
Kristanti, Risky Ayu [1 ]
Yousuf, Abu [3 ]
机构
[1] Univ Malaysia Pahang, Fac Engn Technol, Gambang 26300, Malaysia
[2] Jessore Univ Sci & Technol, Dept Petr & Min Engn, Jessore 7408, Bangladesh
[3] ShahjaIal Univ Sci & Technol, Dept Chem Engn & Polymer Sci, Sylhet 3114, Bangladesh
关键词
Co-gasification; Coconut shell; Charcoal; Downdraft reactor; Syngas; CO-GASIFICATION; WOODY BIOMASS; PHYSICOCHEMICAL PROPERTIES; FAST PYROLYSIS; CONVERSION; REDUCTION; CELLULOSE; COCONUT; ENERGY; SHELL;
D O I
10.1016/j.biombioe.2018.10.006
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Lignocellulosic biomass gasification shows a pronounced prospective to replace fossil fuels. In this study, the gasification of coconut shell with charcoal using a 50 kW downdraft reactor was investigated. The controlling parameter of temperature and pressure were used to verify the production of gas during the gasification process with air. The higher contents of cellulose and hemicellulose than lignin in the sample were found to gasify better, as evident from structural analysis. The gasifier produces a combustible gas with a H-2, CO, CO2 and CH4 concentrations of 8.44, 15.38, 5.38 and 1.62 mol.% respectively, at a total flow of air of 30 m(3) h(-1). The results revealed that 30 wt% charcoal in the feedstock was effectively gasified to generate syngas comprising over 30 mol.% of syngas with a lower heating value of 3.27 MJ/Nm(3). Thus, the co-gasification of lignocellulosic biomass with charcoal may contribute to affordable and environmentally friendly syngas energy.
引用
收藏
页码:335 / 345
页数:11
相关论文
共 56 条
[1]   Gasification behavior of coal and woody biomass: Validation and parametrical study [J].
Adeyemi, Idowu ;
Janajreh, Isam ;
Arink, Thomas ;
Ghenai, Chaouki .
APPLIED ENERGY, 2017, 185 :1007-1018
[2]   Hydrogen rich reducing gases generation in the production of charcoal from woody biomass carbonization [J].
Adrados, A. ;
Lopez-Urionabarrenechea, A. ;
Acha, E. ;
Solar, J. ;
Caballero, B. M. ;
de Marco, I. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 148 :352-359
[3]   Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char [J].
Al-Rahbi, Amal S. ;
Williams, Paul T. .
APPLIED ENERGY, 2017, 190 :501-509
[4]  
Atnaw S. M., 2017, BIOMASS GASIFICATION, P159
[5]   Selective component degradation of oil palm empty fruit bunches (OPEFB) using high-pressure steam [J].
Baharuddin, Azhari Samsu ;
Sulaiman, Alawi ;
Kim, Dong Hee ;
Mokhtar, Mohd Noriznan ;
Hassan, Mohd Ali ;
Wakisaka, Minato ;
Shirai, Yoshihito ;
Nishida, Haruo .
BIOMASS & BIOENERGY, 2013, 55 :268-275
[6]  
Basu P, 2010, BIOMASS GASIFICATION
[7]  
Bhaskar T, 2011, BIOMASS BIOF BIOCHEM, P51
[8]   Review of physicochemical properties and analytical characterization of lignocellulosic biomass [J].
Cai, Junmeng ;
He, Yifeng ;
Yu, Xi ;
Banks, Scott W. ;
Yang, Yang ;
Zhang, Xingguang ;
Yu, Yang ;
Liu, Ronghou ;
Bridgwater, Anthony V. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 76 :309-322
[9]   Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high-performance hydrogen evolution [J].
Cai, Yu ;
Yang, Xi ;
Liang, Tao ;
Dai, Lu ;
Ma, Lin ;
Huang, Guowei ;
Chen, Weixiang ;
Chen, Hongzheng ;
Su, Huanxing ;
Xu, Mingsheng .
NANOTECHNOLOGY, 2014, 25 (46)
[10]  
Cantero-Tubilla B., 2017, J SUPERCRIT FLUIDS 2, V133