TRIP-assisted compressive ductility in Ti-rich refractory medium-entropy alloy

被引:7
作者
Lee, Seongi [1 ]
Choi, Gwanghyo [2 ]
Lee, Kwangmin [1 ]
机构
[1] Chonnam Natl Univ, Sch Mat Sci & Engn, Gwangju 61186, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
RMEA; TRIP; Compressive ductility; Strain rate sensitivity; Ti60Mo10V10Cr10Zr10; DESIGN; MICROSTRUCTURE; DEFORMATION; BEHAVIOR;
D O I
10.1016/j.ijrmhm.2021.105628
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Compositional tuned non-equiatomic refractory high-entropy alloys are coveted materials as they achieve considerable plasticity through transformation-induced plasticity (TRIP) behavior. In this study, a novel Ti-rich Ti60Mo10V10Cr10Zr10 refractory medium-entropy alloy (RMEA) was designed using FactSage. The plastic deformation of the alloy produced using vacuum arc remelting was investigated through a room-temperature compression test at different strain rates. A high strain-hardening rate and an m-value of 0.031 were observed in the Ti-rich Ti60Mo10V10Cr10Zr10 RMEA. The dimple structures formed in BCC phases and TRIP-assisted deformation attribute to the strength and ductility trade-off in Ti-rich Ti60Mo10V10Cr10Zr10 RMEA.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 2011, Mechanical Metallurgy
[2]   FactSage thermochemical software and databases, 2010-2016 [J].
Bale, C. W. ;
Belisle, E. ;
Chartrand, P. ;
Decterov, S. A. ;
Eriksson, G. ;
Gheribi, A. E. ;
Hack, K. ;
Jung, I. -H. ;
Kang, Y. -B. ;
Melancon, J. ;
Pelton, A. D. ;
Petersen, S. ;
Robelin, C. ;
Sangster, J. ;
Spencer, P. ;
Van Ende, M-A. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2016, 54 :35-53
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J].
Dirras, G. ;
Couque, H. ;
Lilensten, L. ;
Heczel, A. ;
Tingaud, D. ;
Couzinie, J. -P. ;
Perriere, L. ;
Gubicza, J. ;
Guillot, I. .
MATERIALS CHARACTERIZATION, 2016, 111 :106-113
[5]   Exceptionally high strain-hardening and ductility due to transformation induced plasticity effect in Ti-rich high-entropy alloys [J].
Eleti, Rajeshwar R. ;
Klimova, Margarita ;
Tikhonovsky, Mikhail ;
Stepanov, Nikita ;
Zherebtsov, Sergey .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J].
Huang, Hailong ;
Wu, Yuan ;
He, Junyang ;
Wang, Hui ;
Liu, Xiongjun ;
An, Ke ;
Wu, Wei ;
Lu, Zhaoping .
ADVANCED MATERIALS, 2017, 29 (30)
[7]   Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy [J].
Joo, S. -H. ;
Kato, H. ;
Jang, M. J. ;
Moon, J. ;
Tsai, C. W. ;
Yeh, J. W. ;
Kim, H. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 689 :122-133
[8]   Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J].
Li, Zhiming ;
Pradeep, Konda Gokuldoss ;
Deng, Yun ;
Raabe, Dierk ;
Tasan, Cemal Cem .
NATURE, 2016, 534 (7606) :227-+
[9]   Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity [J].
Lilensten, Lola ;
Couzinie, Jean-Phillipe ;
Bourgon, Julie ;
Perriere, Loic ;
Dirras, Guy ;
Prima, Frederic ;
Guillot, Ivan .
MATERIALS RESEARCH LETTERS, 2017, 5 (02) :110-116
[10]   Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach [J].
Nguyen, V. T. ;
Qian, M. ;
Shi, Z. ;
Song, T. ;
Huang, L. ;
Zou, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 742 :762-772