Apoptosis: A target for anticancer therapy with novel cyanopyridines

被引:41
作者
Ismail, Magda M. F. [1 ]
Farrag, Amel M. [1 ]
Harras, Marwa F. [1 ]
Ibrahim, Mona H. [1 ]
Mehany, Ahmed B. M. [2 ]
机构
[1] Al Azhar Univ, Fac Pharm Girls, Dept Pharmaceut Chem, Cairo 11754, Egypt
[2] Al Azhar Univ, Fac Sci Boys, Dept Zool, Cairo 11754, Egypt
关键词
Synthesis; Cyanopyridine; Anticancer; Apoptosis; PIM-1; kinase; ADME; PIM KINASES; SERINE/THREONINE KINASES; EXPRESSION; INHIBITORS; FAMILY; ASSAY;
D O I
10.1016/j.bioorg.2019.103481
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the many methods of treating cancer is to terminate the uncontrolled growth of cancer cells. So, aiming the apoptotic pathway is an exciting approach to finding new anticancer agents. A novel series of cyanopyridines was designed and synthesized for antiproliferative evaluation. 2-Amino 6 (4 (benzyloxy)phenyl) 4 (4 (di-methylamino)phenyl) nicotinonitrile 10f was the most potent inhibitor against the growth of PC-3, and HepG-2 cancer cell lines with IC50 values of 2.04 uM (selectivity index, SI = 78.63, 43, respectively). Also, 10f was safe against the growth of normal human diploid lung fibroblasts cell line (WI-38) with an IC50, value of 160.04 uM. Its analogs, 10b, 10d, 10g, and 11b, were also active against the growth of PC-3, and HepG-2 while against MCF-7 cell line, they displayed good cytotoxic activity compared to the reference standard 5-FU. Remarkably, mechanistic studies indicated that compounds 10b, 10d, 10f, 10g, and llb stimulated the level of active caspase 3 and boosted the BAX/BCL2 ratio 20-95 folds in comparison to the control. Our results have also indicated that 10b, 10d, 10f, 10g, and 11b exhibited a very potent inhibitory activity against PIM-1 kinase enzyme, where the IC50, values unraveled very potent molecules in the micromolar range (0.47-1.27 mu M). Further investigations have shown that 10f, the most potent PIM-1 kinase inhibitor, induced a cell cycle arrest at the G2/M phase. Moreover, in silico evaluation of ADME properties indicated that all the cyanopyridine compounds are orally bioavailable with no permeation to the blood brain barrier.
引用
收藏
页数:12
相关论文
共 55 条