Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer

被引:161
作者
Li, Jing [1 ,2 ]
Dong, Di [3 ,4 ]
Fang, Mengjie [3 ,4 ]
Wang, Rui [2 ]
Tian, Jie [3 ,5 ,6 ]
Li, Hailiang [1 ]
Gao, Jianbo [2 ]
机构
[1] Zhengzhou Univ, Henan Canc Hosp, Affiliated Canc Hosp, Dept Radiol, Zhengzhou 450008, Henan, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept Radiol, 1 East Jianshe Rd, Zhengzhou 450052, Henan, Peoples R China
[3] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Xidian Univ, Engn Res Ctr Mol & Neuro Imaging, Sch Life Sci & Technol, Minist Educ, Xian 710126, Shaanxi, Peoples R China
[6] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Gastric cancer; Tomography; X-ray computed; Lymph node; Radiomics; Deep learning; CLASSIFICATION; ACCURACY; RATIO;
D O I
10.1007/s00330-019-06621-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To build a dual-energy CT (DECT)-based deep learning radiomics nomogram for lymph node metastasis (LNM) prediction in gastric cancer. Materials and methods Preoperative DECT images were retrospectively collected from 204 pathologically confirmed cases of gastric adenocarcinoma (mean age, 58 years; range, 28-81 years; 157 men [mean age, 60 years; range, 28-81 years] and 47 women [mean age, 54 years; range, 28-79 years]) between November 2011 and October 2018, They were divided into training (n = 136) and test (n = 68) sets. Radiomics features were extracted from monochromatic images at arterial phase (AP) and venous phase (VP). Clinical information, CT parameters, and follow-up data were collected. A radiomics nomogram for LNM prediction was built using deep learning approach and evaluated in test set using ROC analysis. Its prognostic performance was determined with Harrell's concordance index (C-index) based on patients' outcomes. Results The dual-energy CT radiomics signature was associated with LNM in two sets (Mann-Whitney U test, p < 0.001) and an achieved area under the ROC curve (AUC) of 0.71 for AP and 0.76 for VP in test set. The nomogram incorporated the two radiomics signatures and CT-reported lymph node status exhibited AUCs of 0.84 in the training set and 0.82 in the test set. The C-indices of the nomogram for progression-free survival and overall survival prediction were 0.64 (p = 0.004) and 0.67 (p = 0.002). Conclusion The DECT-based deep learning radiomics nomogram showed good performance in predicting LNM in gastric cancer. Furthermore, it was significantly associated with patients' prognosis.
引用
收藏
页码:2324 / 2333
页数:10
相关论文
共 35 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Gastric Cancer, Version 2.2013 Featured Updates to the NCCN Guidelines [J].
Ajani, Jaffer A. ;
Bentrem, David J. ;
Besh, Stephen ;
D'Amico, Thomas A. ;
Das, Prajnan ;
Denlinger, Crystal ;
Fakih, Marwan G. ;
Fuchs, Charles S. ;
Gerdes, Hans ;
Glasgow, Robert E. ;
Hayman, James A. ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kleinberg, Lawrence R. ;
Korn, W. Michael ;
Lockhart, A. Craig ;
Meredith, Kenneth ;
Mulcahy, Mary F. ;
Orringer, Mark B. ;
Posey, James A. ;
Sasson, Aaron R. ;
Scott, Walter J. ;
Strong, Vivian E. ;
Varghese, Thomas K., Jr. ;
Warren, Graham ;
Washington, Mary Kay ;
Willett, Christopher ;
Wright, Cameron D. ;
McMillian, Nicole R. ;
Sundar, Hema .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2013, 11 (05) :531-546
[3]   Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm [J].
Al Ajmi, Eiman ;
Forghani, Behzad ;
Reinhold, Caroline ;
Bayat, Maryam ;
Forghani, Reza .
EUROPEAN RADIOLOGY, 2018, 28 (06) :2604-2611
[4]   The role of CT and staging laparoscopy in the staging of gastric cancer [J].
Burbidge, S. ;
Mahady, K. ;
Naik, K. .
CLINICAL RADIOLOGY, 2013, 68 (03) :251-255
[5]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[6]   Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J].
Dong, D. ;
Tang, L. ;
Li, Z. -Y ;
Fang, M-J ;
Gao, J-B ;
Shan, X-H ;
Ying, X-J ;
Sun, Y-S ;
Fu, J. ;
Wang, X-X ;
Li, L-M ;
Li, Z-H ;
Zhang, D-F ;
Zhang, Y. ;
Li, Z-M ;
Shan, F. ;
Bu, Z-D ;
Tian, J. ;
Ji, J-F .
ANNALS OF ONCOLOGY, 2019, 30 (03) :431-438
[7]   Accuracy of EUS and CT imaging in preoperative gastric cancer staging [J].
Fairweather, Mark ;
Jajoo, Kunal ;
Sainani, Nisha ;
Bertagnolli, Monica M. ;
Wang, Jiping .
JOURNAL OF SURGICAL ONCOLOGY, 2015, 111 (08) :1016-1020
[8]   Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 [J].
Ferlay, Jacques ;
Soerjomataram, Isabelle ;
Dikshit, Rajesh ;
Eser, Sultan ;
Mathers, Colin ;
Rebelo, Marise ;
Parkin, Donald Maxwell ;
Forman, David ;
Bray, Freddie .
INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (05) :E359-E386
[9]   Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker [J].
Giganti, Francesco ;
Antunes, Sofia ;
Salerno, Annalaura ;
Ambrosi, Alessandro ;
Marra, Paolo ;
Nicoletti, Roberto ;
Orsenigo, Elena ;
Chiari, Damiano ;
Albarello, Luca ;
Staudacher, Carlo ;
Esposito, Antonio ;
Del Maschio, Alessandro ;
De Cobelli, Francesco .
EUROPEAN RADIOLOGY, 2017, 27 (05) :1831-1839
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577