Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

被引:220
作者
Rondin, L. [1 ]
Dantelle, G. [1 ,2 ]
Slablab, A. [1 ]
Grosshans, F. [1 ]
Treussart, F. [1 ]
Bergonzo, P. [3 ]
Perruchas, S. [2 ]
Gacoin, T. [2 ]
Chaigneau, M. [4 ]
Chang, H. -C. [5 ]
Jacques, V. [1 ]
Roch, J. -F. [1 ]
机构
[1] ENS, UMR CNRS 8537, Lab Photon Quant & Mol, F-94235 Cachan, France
[2] Ecole Polytech, UMR CNRS 7643, Phys Mat Condensee Lab, F-91128 Palaiseau, France
[3] CEA, Diamond Sensors Lab, LIST, F-91191 Gif Sur Yvette, France
[4] Ecole Polytech, UMR CNRS 7647, Phys Interfaces & Couches Minces Lab, F-91128 Palaiseau, France
[5] Acad Sinica, Inst Atom & Mol Sci, Taipei 106, Taiwan
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 11期
关键词
FLUORESCENT NANODIAMONDS; ELECTRONIC SPIN; COLOR-CENTERS; DIAMOND;
D O I
10.1103/PhysRevB.82.115449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively charged NV(-) defects, with respect to its neutral counterpart NV(0), decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase in the proportion of NV(-) defects in 10 nm NDs. These results are invaluable for further understanding, control, and use of the unique properties of negatively charged NV defects in diamond.
引用
收藏
页数:5
相关论文
共 35 条
  • [1] Nanoscale imaging magnetometry with diamond spins under ambient conditions
    Balasubramanian, Gopalakrishnan
    Chan, I. Y.
    Kolesov, Roman
    Al-Hmoud, Mohannad
    Tisler, Julia
    Shin, Chang
    Kim, Changdong
    Wojcik, Aleksander
    Hemmer, Philip R.
    Krueger, Anke
    Hanke, Tobias
    Leitenstorfer, Alfred
    Bratschitsch, Rudolf
    Jelezko, Fedor
    Wrachtrup, Joerg
    [J]. NATURE, 2008, 455 (7213) : 648 - U46
  • [2] Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
  • [3] Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond
    Barclay, Paul E.
    Fu, Kai-Mei C.
    Santori, Charles
    Beausoleil, Raymond G.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (19)
  • [4] Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity
    Barth, Michael
    Nuesse, Nils
    Loechel, Bernd
    Benson, Oliver
    [J]. OPTICS LETTERS, 2009, 34 (07) : 1108 - 1110
  • [5] Bradac C, 2010, NAT NANOTECHNOL, V5, P345, DOI [10.1038/nnano.2010.56, 10.1038/NNANO.2010.56]
  • [6] Photon antibunching in the fluorescence of individual color centers in diamond
    Brouri, R
    Beveratos, A
    Poizat, JP
    Grangier, P
    [J]. OPTICS LETTERS, 2000, 25 (17) : 1294 - 1296
  • [7] *CEA LIST, SAPHIR EL IRR FAC
  • [8] Mass production and dynamic imaging of fluorescent nanodiamonds
    Chang, Yi-Ren
    Lee, Hsu-Yang
    Chen, Kowa
    Chang, Chun-Chieh
    Tsai, Dung-Sheng
    Fu, Chi-Cheng
    Lim, Tsong-Shin
    Tzeng, Yan-Kai
    Fang, Chia-Yi
    Han, Chau-Chung
    Chang, Huan-Cheng
    Fann, Wunshain
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (05) : 284 - 288
  • [9] High-temperature annealing of optical centers in type-I diamond
    Collins, AT
    Connor, A
    Ly, CH
    Shareef, A
    Spear, PM
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (08)
  • [10] The Fermi level in diamond
    Collins, AT
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (14) : 3743 - 3750