Geometry of the three-qubit state, entanglement and division algebras

被引:38
作者
Bernevig, BA [1 ]
Chen, HD
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 30期
关键词
D O I
10.1088/0305-4470/36/30/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalization to three qubits of the standard Bloch sphere representation for a single qubit and of the seven-dimensional sphere representation for two qubits presented in Mosseri et al (Mosseri R and Dandoloff R 2001 J. Phys. A: Math. Gen. 34 10243). The Hilbert space of the three-qubit system is the 15-dimensional sphere S-15, which allows for a natural (last) Hopf fibration with S-8 as base and S-7 as fibre. A striking feature is, as in the case of one and two qubits, that the map is entanglement sensitive, and the two distinct ways of un-entangling three qubits are naturally related to the Hopf map. We define a quantity that measures the degree of entanglement of the three-qubit state. Conjectures on the possibility of generalizing the construction for higher qubit states are also discussed.
引用
收藏
页码:8325 / 8339
页数:15
相关论文
共 27 条
  • [11] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [12] GREENBERGER DM, 1989, FUND THEOR, V37, P69
  • [13] Entanglement of a pair of quantum bits
    Hill, S
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (26) : 5022 - 5025
  • [14] Quantum secret sharing
    Hillery, M
    Buzek, V
    Berthiaume, A
    [J]. PHYSICAL REVIEW A, 1999, 59 (03): : 1829 - 1834
  • [15] Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature?
    Horodecki, M
    Horodecki, P
    Horodecki, R
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5239 - 5242
  • [16] HORODECKI M, 2000, QUANTPH0006071
  • [17] KUS M, 1991, PHYS REV A, V59
  • [18] Separability and distillability in composite quantum systems - a primer
    Lewenstein, M
    Bruss, D
    Cirac, JI
    Kraus, B
    Kus, M
    Samsonowicz, J
    Sanpera, A
    Tarrach, R
    [J]. JOURNAL OF MODERN OPTICS, 2000, 47 (14-15) : 2481 - 2499
  • [19] Global entanglement in multiparticle systems
    Meyer, DA
    Wallach, NR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) : 4273 - 4278
  • [20] Classification of multipartite entangled states by multidimensional determinants
    Miyake, A
    [J]. PHYSICAL REVIEW A, 2003, 67 (01):