Geometry of the three-qubit state, entanglement and division algebras

被引:38
作者
Bernevig, BA [1 ]
Chen, HD
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 30期
关键词
D O I
10.1088/0305-4470/36/30/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalization to three qubits of the standard Bloch sphere representation for a single qubit and of the seven-dimensional sphere representation for two qubits presented in Mosseri et al (Mosseri R and Dandoloff R 2001 J. Phys. A: Math. Gen. 34 10243). The Hilbert space of the three-qubit system is the 15-dimensional sphere S-15, which allows for a natural (last) Hopf fibration with S-8 as base and S-7 as fibre. A striking feature is, as in the case of one and two qubits, that the map is entanglement sensitive, and the two distinct ways of un-entangling three qubits are naturally related to the Hopf map. We define a quantity that measures the degree of entanglement of the three-qubit state. Conjectures on the possibility of generalizing the construction for higher qubit states are also discussed.
引用
收藏
页码:8325 / 8339
页数:15
相关论文
共 27 条
  • [1] Degree of entanglement for two qubits
    Abouraddy, AF
    Saleh, BEA
    Sergienko, AV
    Teich, MC
    [J]. PHYSICAL REVIEW A, 2001, 64 (05): : 4
  • [2] Baez JC, 2002, B AM MATH SOC, V39, P145
  • [3] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [4] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [5] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [6] Concentrating partial entanglement by local operations
    Bennett, CH
    Bernstein, HJ
    Popescu, S
    Schumacher, B
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2046 - 2052
  • [7] Multiparticle generalization of entanglement swapping
    Bose, S
    Vedral, V
    Knight, PL
    [J]. PHYSICAL REVIEW A, 1998, 57 (02): : 822 - 829
  • [8] Local symmetry properties of pure three-qubit states
    Carteret, HA
    Sudbery, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28): : 4981 - 5002
  • [9] Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A
    Podolsky, B
    Rosen, N
    [J]. PHYSICAL REVIEW, 1935, 47 (10): : 0777 - 0780
  • [10] PRACTICAL QUANTUM CRYPTOGRAPHY BASED ON 2-PHOTON INTERFEROMETRY
    EKERT, AK
    RARITY, JG
    TAPSTER, PR
    PALMA, GM
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (09) : 1293 - 1295