Fractional quantum numbers, complex orbifolds and noncommutative geometry

被引:0
作者
Mathai, Varghese [1 ]
Wilkin, Graeme [2 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
澳大利亚研究理事会;
关键词
fractional quantum numbers; Riemann orbifolds; holomorphic orbibundles; von Neumann degree; noncommutative geometry; TWISTED INDEX THEORY; HYPERBOLIC PLANE; OPERATORS;
D O I
10.1088/1751-8121/ac0b8c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the conductance on the universal homology covering space Z of 2D orbifolds in a strong magnetic field, thereby removing the rationality constraint on the magnetic field in earlier works (Avron et al 1994 Phys. Rev. Lett. 73 3255-3257; Mathai and Wilkin 2019 Lett. Math. Phys. 109 2473-2484; Prieto 2006 Commun. Math. Phys. 265 373-396) in the literature. We consider a natural Landau Hamiltonian on Z and study its spectrum which we prove consists of a finite number of low-lying isolated points and calculate the von Neumann degree of the associated holomorphic spectral orbibundles when the magnetic field B is large, and obtain fractional quantum numbers as the conductance.
引用
收藏
页数:18
相关论文
共 30 条
[1]  
[Anonymous], 1999, CONTEMP MATH
[2]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (01) :33-49
[3]   ADIABATIC QUANTUM TRANSPORT - QUANTIZATION AND FLUCTUATIONS [J].
AVRON, JE ;
SEILER, R ;
ZOGRAF, PG .
PHYSICAL REVIEW LETTERS, 1994, 73 (24) :3255-3257
[4]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[5]   Gap-labelling conjecture with nonzero magnetic field [J].
Benameur, Moulay Tahar ;
Mathai, Varghese .
ADVANCES IN MATHEMATICS, 2018, 325 :116-164
[6]  
Bruning J., 1991, METHODES SEMICLASSIQ, V2, P65
[7]   Quantum Hall effect on the hyperbolic plane in the presence of disorder [J].
Carey, A ;
Hannabuss, K ;
Mathai, V .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 47 (03) :215-236
[8]   Quantum hall effect on the hyperbolic plane [J].
Carey, AL ;
Hannabuss, KC ;
Mathai, V ;
McCann, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 190 (03) :629-673
[9]  
Carey AL, 2006, J GEOM SYMMETRY PHYS, V6, P16
[10]   EFFECTIVE ACTION ON THE HYPERBOLIC PLANE IN A CONSTANT EXTERNAL-FIELD [J].
COMTET, A ;
HOUSTON, PJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (01) :185-191