Critical Fujita exponents for a class of nonlinear convection-diffusion equations

被引:5
作者
Guo, Wei [2 ,3 ]
Wang, Zejia [1 ]
Du, Runmei [2 ]
Wen, Lishu [4 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[3] Beihua Univ, Sch Math, Jilin 132013, Jilin, Peoples R China
[4] Neusoft Inst Informat, Gen Educ Dept, Dalian 116023, Peoples R China
关键词
critical Fujita exponent; convection-diffusion equation; exterior problem; LINEAR PARABOLIC EQUATIONS; SEMILINEAR HEAT-EQUATION; NEUMANN BOUNDARY DATA; BLOW-UP; EXTERIOR DOMAINS; GLOBAL-SOLUTIONS; WAVE-EQUATIONS; DEGENERATE; NONEXISTENCE; EXISTENCE;
D O I
10.1002/mma.1406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the blow-up theorems of Fujita type for a class of homogeneous Neumann exterior problems of quasilinear convection-diffusion equations. The critical Fujita exponents are determined and it is shown that the exponents belong to the blow-up case under any nontrivial initial data. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:839 / 849
页数:11
相关论文
共 27 条
[1]   A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary [J].
Andreucci, D ;
Tedeev, AF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (02) :543-567
[2]  
[Anonymous], 1967, Linear and Quasilinear Equations of Parabolic Type
[3]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[5]   Critical exponents and collapse of nonlinear Schrodinger equations with anisotropic fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Schochet, S .
NONLINEARITY, 2003, 16 (05) :1809-1821
[6]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[7]   CONDITIONS FOR GLOBAL NON-EXISTENCE AND LOCALIZATION OF SOLUTIONS OF THE CAUCHY-PROBLEM FOR A CLASS OF NON-LINEAR PARABOLIC EQUATIONS [J].
GALAKTIONOV, VA .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1983, 23 (06) :36-44
[8]   A general approach to critical Fujita exponents in nonlinear parabolic problems [J].
Galaktionov, VA ;
Levine, HA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (07) :1005-1027
[9]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146
[10]   BLOW-UP FOR QUASI-LINEAR HEAT-EQUATIONS WITH CRITICAL FUJITAS EXPONENTS [J].
GALAKTIONOV, VA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :517-525