Non-uniform Euler-Bernoulli beams' natural frequencies

被引:0
|
作者
Aya B, Hugo [1 ]
Cano M, Ricardo [2 ]
Zhevandrov B, Petr [2 ]
机构
[1] Univ Distrital Franscisco Jose de Caldas, Bogota, Colombia
[2] Univ Sabana, Chia, Colombia
来源
INGENIERIA E INVESTIGACION | 2011年 / 31卷 / 01期
关键词
Euler-Bernoulli beam; WKB method; VIBRATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper has studied the problem of natural frequencies for Euler-Bernoulli beams having non-uniform cross-section. The numerically-obtained solutions were compared to asymptotic solutions obtained by the Wentzel-Kramers-Brillouin (WKB) method. It was established that WKB formula precision was higher than 3% for high frequencies (>= 4 mode).
引用
收藏
页码:7 / 15
页数:9
相关论文
共 50 条
  • [41] EVALUATION OF NATURAL FREQUENCIES OF NON-UNIFORM BEAMS BY NUMERICAL-INTEGRATION
    CHEN, YZ
    XIE, JR
    COMPUTERS & STRUCTURES, 1988, 29 (04) : 693 - 697
  • [42] On natural frequencies of non-uniform beams modulated by finite periodic cells
    Xu, Yanlong
    Zhou, Xiaoling
    Wang, Wei
    Wang, Longqi
    Peng, Fujun
    Li, Bin
    PHYSICS LETTERS A, 2016, 380 (40) : 3278 - 3283
  • [43] Free vibration analysis of non-uniform Euler–Bernoulli beams by means of Bernstein pseudospectral collocation
    D. Garijo
    Engineering with Computers, 2015, 31 : 813 - 823
  • [44] Modal formulation of segmented Euler-Bernoulli beams
    Copetti, Rosemaira Dalcin
    Claeyssen, Julio C. R.
    Tsukazan, Teresa
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2007, 2007
  • [45] Chaotic dynamics of flexible Euler-Bernoulli beams
    Awrejcewicz, J.
    Krysko, A. V.
    Kutepov, I. E.
    Zagniboroda, N. A.
    Dobriyan, V.
    Krysko, V. A.
    CHAOS, 2013, 23 (04)
  • [46] Bayesian parameter estimation of Euler-Bernoulli beams
    Ardekani, Iman T.
    Kaipio, Jari
    Sakhaee, Neda
    Sharifzadeh, Hamid
    TENTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2019, 2019, 11071
  • [47] Fragile points method for Euler-Bernoulli beams
    Malla, Abinash
    Natarajan, Sundararajan
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 106
  • [48] Stability of a complex network of Euler-Bernoulli beams
    Tianjin University, Department of Mathematics, Tianjin 300072, China
    不详
    WSEAS Trans. Syst., 2009, 3 (379-389):
  • [49] Bending Problem of Euler-Bernoulli Discontinuous Beams
    Failla, Giuseppe
    Santini, Adolfo
    INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2009, 25 (04) : 849 - 860
  • [50] Stabilization of a Triangle Network of Euler-Bernoulli Beams
    Zhang Kuiting
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 6142 - 6147