Non-uniform Euler-Bernoulli beams' natural frequencies

被引:0
|
作者
Aya B, Hugo [1 ]
Cano M, Ricardo [2 ]
Zhevandrov B, Petr [2 ]
机构
[1] Univ Distrital Franscisco Jose de Caldas, Bogota, Colombia
[2] Univ Sabana, Chia, Colombia
来源
INGENIERIA E INVESTIGACION | 2011年 / 31卷 / 01期
关键词
Euler-Bernoulli beam; WKB method; VIBRATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper has studied the problem of natural frequencies for Euler-Bernoulli beams having non-uniform cross-section. The numerically-obtained solutions were compared to asymptotic solutions obtained by the Wentzel-Kramers-Brillouin (WKB) method. It was established that WKB formula precision was higher than 3% for high frequencies (>= 4 mode).
引用
收藏
页码:7 / 15
页数:9
相关论文
共 50 条
  • [21] Non-linear vibration of Euler-Bernoulli beams
    Barari, A.
    Kaliji, H. D.
    Ghadimi, M.
    Domairry, G.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2011, 8 (02): : 139 - 148
  • [22] Uniform exponential stabilisation of serially connected inhomogeneous Euler-Bernoulli beams
    Augner, Bjoern
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [23] Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section
    Sinir, Sumeyye
    Cevik, Mehmet
    Sinir, B. Gultekin
    COMPOSITES PART B-ENGINEERING, 2018, 148 : 123 - 131
  • [24] Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method
    Hsu, Jung-Chang
    Lai, Hsin-Yi
    Chen, C. K.
    JOURNAL OF SOUND AND VIBRATION, 2008, 318 (4-5) : 965 - 981
  • [25] Non-collocated Feedback Stabilization of a Non-Uniform Euler-Bernoulli Beam with In-Domain Actuation
    Schroeck, J.
    Meurer, T.
    Kugi, A.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 2776 - 2781
  • [26] Stabilization of an Euler-Bernoulli beam system with a tip mass subject to non-uniform bounded disturbance
    Li, Yanfang
    Xu, Genqi
    Han, Zhongjie
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2017, 34 (04) : 1239 - 1254
  • [27] Size-dependent buckling analysis of Euler-Bernoulli nanobeam under non-uniform concentration
    Li, Chenlin
    Tian, Xiaogeng
    He, Tianhu
    ARCHIVE OF APPLIED MECHANICS, 2020, 90 (09) : 1845 - 1860
  • [28] Transverse Vibration of Non-uniform Euler-Bernoulli Beam, Using Differential Transform Method (DTM)
    Torabi, K.
    Afshari, H.
    Zafari, E.
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 2400 - 2405
  • [29] Simple formulas for the natural frequencies of non-uniform cables and beams
    Lenci, S.
    Clementi, F.
    Mazzilli, C. E. N.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 77 : 155 - 163
  • [30] ACCURATE FINITE-DIFFERENCE CALCULATION OF THE NATURAL FREQUENCIES OF EULER-BERNOULLI BEAMS USING RICHARDSON EXTRAPOLATION
    ORDUNABUSTAMANTE, F
    JOURNAL OF SOUND AND VIBRATION, 1993, 162 (02) : 361 - 367