Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-Al2O3 nanocomposites

被引:13
作者
Guo, Yan [1 ]
Cho, Hoonsung [1 ]
Shi, Donglu [1 ,2 ]
Lian, Jie [3 ,4 ]
Song, Yi [5 ]
Abot, Jandro [5 ]
Poudel, Bed [6 ]
Ren, Zhifeng [6 ]
Wang, Lumin [3 ,7 ,8 ]
Ewing, Rodney C. [3 ,7 ,8 ]
机构
[1] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA
[2] Shanghai Jiao Tong Univ, Res Inst Micro Nano Sci & Technol, Shanghai 200030, Peoples R China
[3] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA
[4] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[5] Univ Cincinnati, Dept Aerosp Engn & Engn Mech, Cincinnati, OH 45221 USA
[6] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[7] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[8] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2824865
中图分类号
O59 [应用物理学];
学科分类号
摘要
The effects of plasma surface modification on interfacial behaviors in carbon nanotube (CNT) reinforced alumina (Al2O3) nanocomposites were studied. A unique plasma polymerization method was used to modify the surfaces of CNTs and Al2O3 nanoparticles. The CNT-Al2O3 nanocomposites were processed by both ambient pressure and hot-press sintering. The electron microscopy results showed ultrathin polymer coating on the surfaces of CNTs and Al2O3 nanoparticles. A distinctive stress-strain curve difference related to the structural interfaces and plasma coating was observed from the nanocomposites. The mechanical performance and thermal stability of CNT-Al2O3 nanocomposites were found to be significantly enhanced by the plasma-polymerized coating. (c) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 21 条
[1]  
Ajayan PM, 2001, TOP APPL PHYS, V80, P391
[2]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[3]   Nanotube composite carbon fibers [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Rantell, T ;
Derbyshire, F ;
Chen, Y ;
Chen, J ;
Haddon, RC .
APPLIED PHYSICS LETTERS, 1999, 75 (09) :1329-1331
[4]   Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing [J].
Cha, SI ;
Kim, KT ;
Arshad, SN ;
Mo, CB ;
Hong, SH .
ADVANCED MATERIALS, 2005, 17 (11) :1377-+
[5]   Carbon nanotube-metal-oxide nanocomposites:: Microstructure, electrical conductivity and mechanical properties [J].
Flahaut, E ;
Peigney, A ;
Laurent, C ;
Marlière, C ;
Chastel, F ;
Rousset, A .
ACTA MATERIALIA, 2000, 48 (14) :3803-3812
[6]  
Hwang GL, 2001, J MATER CHEM, V11, P1722
[7]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[8]   Study on poly(methyl methacrylate)/carbon nanotube composites [J].
Jia, ZJ ;
Wang, ZY ;
Xu, CL ;
Liang, J ;
Wei, BQ ;
Wu, DH ;
Zhu, SW .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 271 (1-2) :395-400
[9]   Processing of carbon nanotube reinforced aluminum composite [J].
Kuzumaki, T ;
Miyazawa, K ;
Ichinose, H ;
Ito, K .
JOURNAL OF MATERIALS RESEARCH, 1998, 13 (09) :2445-2449
[10]   Carbon nanotubes Fe alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites [J].
Laurent, C ;
Peigney, A ;
Dumortier, O ;
Rousset, A .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1998, 18 (14) :2005-2013