New finite-dimensional risk-sensitive filters: Small noise limits

被引:4
作者
Charalambous, CD
Dey, S
Elliott, RJ
机构
[1] McGill Univ, Dept Elect Engn, Montreal, PQ H3A 2A7, Canada
[2] Australian Natl Univ, Res Sch Informat Sci & Engn, Dept Syst Engn, Canberra, ACT 0200, Australia
[3] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
filtering; finite-dimensional; risk-sensitive;
D O I
10.1109/9.720499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with continuous-time nonlinear risk-sensitive filters. It is shown that for large classes of nonlinearities entering both the dynamics and measurements, these filters are finite-dimensional generalizations of the Benes filters. Specific examples are discussed. The small noise limiting analog is discussed using change of probability measures.
引用
收藏
页码:1424 / 1429
页数:6
相关论文
共 16 条
[1]  
Benes V. E., 1981, Stochastics, V5, P65, DOI 10.1080/17442508108833174
[2]   General finite-dimensional risk-sensitive problems and small noise limits [J].
Bensoussan, A ;
Elliott, RJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (02) :210-215
[3]   OPTIMAL-CONTROL OF PARTIALLY OBSERVABLE STOCHASTIC-SYSTEMS WITH AN EXPONENTIAL-OF-INTEGRAL PERFORMANCE INDEX [J].
BENSOUSSAN, A ;
VANSCHUPPEN, JH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (04) :599-613
[4]  
CHARALAMBOUS C, 1994, 33 IEEE C DEC CONTR, P1433
[5]   The role of information state and adjoint in relating nonlinear output feedback risk-sensitive control and dynamic games [J].
Charalambous, CD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1163-1170
[6]   Partially observable nonlinear risk-sensitive control problems: Dynamic programming and verification theorems [J].
Charalambous, CD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1130-1138
[7]   Certain nonlinear partially observable stochastic optimal control problems with explicit control laws equivalent to LEQG/LQG problems [J].
Charalambous, CD ;
Elliott, RJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (04) :482-497
[8]   RISK-SENSITIVE FILTERING AND SMOOTHING FOR HIDDEN MARKOV-MODELS [J].
DEY, S ;
MOORE, JB .
SYSTEMS & CONTROL LETTERS, 1995, 25 (05) :361-366
[9]  
FLEMING WH, 1992, STOCHASTIC THEORY AD, P185
[10]  
HIBEY J., 1996, STOCHASTICS STOCHAST, V57, P247