Quantification of the forces driving self-assembly of three-dimensional microtissues

被引:73
|
作者
Youssef, Jacquelyn [1 ,2 ]
Nurse, Asha K. [3 ]
Freund, L. B. [1 ,3 ]
Morgan, Jeffrey R. [1 ,2 ]
机构
[1] Brown Univ, Ctr Biomed Engn, Providence, RI 02912 USA
[2] Brown Univ, Dept Mol Pharmacol Physiol & Biotechnol, Providence, RI 02912 USA
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D cell culture; cellular mechanics; systems biology; multicellular aggregate; STRESS FIBERS; RHO-KINASE; FIBROBLASTS; CONTRACTION; ADHESION; CELLS; ORGANIZATION; LOCOMOTION; MECHANISM; SUBSTRATE;
D O I
10.1073/pnas.1102559108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a nonadhesive environment, cells will self-assemble into microtissues, a process relevant to tissue engineering. Although this has been recognized for some time, there is no basis for quantitative characterization of this complex process. Here we describe a recently developed assay designed to quantify aspects of the process and discuss its application in comparing behaviors between cell types. Cells were seeded in nonadhesive micromolded wells, each well with a circular trough at its base formed by the cylindrical sidewalls and by a central peg in the form of a right circular cone. Cells settled into the trough and coalesced into a toroid, which was then driven up the conical peg by the forces of self-assembly. The mass of the toroid and its rate of upward movement were used to calculate the cell power expended in the process against gravity. The power of the toroid was found to be 0.31 +/- 0.01 pJ/h and 4.3 +/- 1.7 pJ/h for hepatocyte cells and fibroblasts, respectively. Blocking Rho kinase by means of Y-27632 resulted in a 50% and greater reduction in power expended by each type of toroid, indicating that cytoskeletal-mediated contraction plays a significant role in the self-assembly of both cell types. Whereas the driving force for self-assembly has often been viewed as the binding of surface proteins, these data show that cellular contraction is important for cell-cell adhesion. The power measurement quantifies the contribution of cell contraction, and will be useful for understanding the concerted action of the mechanisms that drive self-assembly.
引用
收藏
页码:6993 / 6998
页数:6
相关论文
共 50 条
  • [1] Three-dimensional mesoscale self-assembly
    Huck, WTS
    Tien, J
    Whitesides, GM
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (32) : 8267 - 8268
  • [2] Self-Assembly of Three-Dimensional Nanostructured Antimony
    Liu, Peng
    Zhong, Kuan
    Liang, Chaolun
    Yang, Qiqin
    Tong, Yexiang
    Li, Gaoren
    Hope, Greg A.
    CHEMISTRY OF MATERIALS, 2008, 20 (24) : 7532 - 7538
  • [3] Demonstration of three-dimensional microstructure self-assembly
    Green, P.W., 1600, IEEE, Piscataway, NJ, United States (04):
  • [4] Self-assembly of droplets in three-dimensional microchannels
    Parthiban, Pravien
    Doyle, Patrick S.
    Hashimoto, Michinao
    SOFT MATTER, 2019, 15 (21) : 4244 - 4254
  • [5] Coordinated Three-Dimensional Robotic Self-Assembly
    Kelly, Jonathan
    Zhang, Hong
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-4, 2009, : 172 - +
  • [6] Three-dimensional self-assembly by ice crystallization
    Im, SH
    Park, OO
    APPLIED PHYSICS LETTERS, 2002, 80 (22) : 4133 - 4135
  • [7] Demonstration of three-dimensional microstructure self-assembly
    Green, PW
    Syms, RRA
    Yeatman, EM
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1995, 4 (04) : 170 - 176
  • [8] SELF-ASSEMBLY OF THREE-DIMENSIONAL NANOPOROUS CONTAINERS
    Wang, Jaihai
    Patel, Mira
    Gracias, David H.
    NANO, 2009, 4 (01) : 1 - 5
  • [10] Growth imperfections in three-dimensional colloidal self-assembly
    Teh, LK
    Tan, NK
    Wong, CC
    Li, S
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (07): : 1399 - 1404