Spatiotemporal patterns emerging from a spatially localized time-delayed feedback scheme

被引:1
作者
Czak, Jason [1 ,2 ]
Pleimling, Michel [1 ,2 ,3 ]
机构
[1] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[2] Virginia Tech, Ctr Soft Matter & Biol Phys, Blacksburg, VA 24061 USA
[3] Virginia Tech, Acad Integrated Sci, Blacksburg, VA 24061 USA
关键词
CHAOS; DYNAMICS;
D O I
10.1103/PhysRevE.104.064213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In attempts to manage spatiotemporal transient chaos in spatially extended systems, these systems are often subjected to protocols that perturb them as a whole and stabilize globally a new dynamic regime, as, for example, a uniform steady state. In this work we show that selectively perturbing only part of a system can generate space-time patterns that are not observed when controlling the whole system. Depending on the protocol used, these new patterns can emerge either in the perturbed or the unperturbed region. Specifically, we use a spatially localized time-delayed feedback scheme on the one-dimensional Gray-Scott reaction-diffusion system in the transient chaotic regime and demonstrate, through the numerical integration of the resulting kinetic equations, the stabilization of spatially localized space-time patterns that can be perfectly periodic. The mechanism underlying the observed pattern generation is related to diffusion across the interfaces separating the perturbed and unperturbed regions.
引用
收藏
页数:9
相关论文
共 43 条
[21]  
Lai YC, 2011, APPL MATH SCI, V173, P3, DOI 10.1007/978-1-4419-6987-3
[22]   Noise-controlled self-replicating patterns -: art. no. 238301 [J].
Lesmes, F ;
Hochberg, D ;
Morán, F ;
Pérez-Mercader, J .
PHYSICAL REVIEW LETTERS, 2003, 91 (23) :238301-238301
[23]   Controlling the Position of Traveling Waves in Reaction-Diffusion Systems [J].
Loeber, Jakob ;
Engel, Harald .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[24]   Interface growth and pattern formation in bacterial colonies [J].
Matsushita, M ;
Wakita, J ;
Itoh, H ;
Rafols, I ;
Matsuyama, T ;
Sakaguchi, H ;
Mimura, M .
PHYSICA A, 1998, 249 (1-4) :517-524
[25]   Pattern formation in the bistable Gray-Scott model [J].
Mazin, W ;
Rasmussen, KE ;
Mosekilde, E ;
Borckmans, P ;
Dewel, G .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 40 (3-4) :371-396
[26]   Models of biological pattern formation: From elementary steps to the organization of embryonic axes [J].
Meinhardt, Hans .
MULTISCALE MODELING OF DEVELOPMENTAL SYSTEMS, 2008, 81 :1-63
[27]   Control of waves, patterns and turbulence in chemical systems [J].
Mikhailov, AS ;
Showalter, K .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 425 (2-3) :79-194
[28]   Spike autosolitons and pattern formation scenarios in the two-dimensional Gray-Scott model [J].
Muratov, CB ;
Osipov, VV .
EUROPEAN PHYSICAL JOURNAL B, 2001, 22 (02) :213-221
[29]   Phase-Reduction Approach to Synchronization of Spatiotemporal Rhythms in Reaction-Diffusion Systems [J].
Nakao, Hiroya ;
Yanagita, Tatsuo ;
Kawamura, Yoji .
PHYSICAL REVIEW X, 2014, 4 (02)
[30]   Spatio-temporal chaos for the Gray-Scott model [J].
Nishiura, Y ;
Ueyama, D .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 150 (3-4) :137-162