A mollification regularization method for stable analytic continuation

被引:16
作者
Deng, Zhi-Liang [1 ,2 ]
Fu, Chu-Li [1 ]
Feng, Xiao-Li [1 ]
Zhang, Yuan-Xiang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Analytic continuation; III-posed problems; Mollification method; Error estimate; A posteriori; APPROXIMATE INVERSE;
D O I
10.1016/j.matcom.2010.11.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper. we consider an analytic continuation problem on a strip domain with the data given approximately only on the real axis. The Gauss mollification method is proposed to solve this problem. An a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, we also propose a new a posteriori parameter choice rule and get a good error estimate. Several numerical examples are provided, which show the method works effectively. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1593 / 1608
页数:16
相关论文
共 23 条
[1]   Numerical inversion of the laplace transform from the real axis [J].
Airapetyan, RG ;
Ramm, AG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (02) :572-587
[2]   Application of basic hypergeometric series to stable analytic continuation [J].
Ali, I ;
Tuan, VK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :193-202
[3]  
[Anonymous], 1996, INTRO MATH THEORY IN
[4]  
[Anonymous], 1988, APPL COMPUTATIONAL C
[5]  
Engl H. W., 1996, REGULARIZATION INVER
[6]  
Epstein C. L., INTRO MATH MED IMAGI
[7]   ANALYTIC CONTINUATION BY THE FAST FOURIER-TRANSFORM [J].
FRANKLIN, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (01) :112-122
[8]   A MODIFIED TIKHONOV REGULARIZATION FOR STABLE ANALYTIC CONTINUATION [J].
Fu, Chu-Li ;
Deng, Zhi-Liang ;
Feng, Xiao-Li ;
Dou, Fang-Fang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2982-3000
[9]  
FU CL, INVERSE PROBLEMS, V24
[10]  
Hao D., 1998, Methods for inverse heat conduction problems.-Peter Lang pub