Graphene Modified Electrode for the Direct Electron Transfer of Bilirubin Oxidase

被引:10
作者
Shiba, Shunsuke [1 ,2 ]
Inoue, Junji [2 ]
Kato, Dai [2 ]
Yoshioka, Kyoko [2 ]
Niwa, Osamu [1 ,2 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058566, Japan
关键词
Graphene; Direct Electron Transfer; Bilirubin Oxidase; Nanocarbon; CARBON; SENSORS; ENZYME;
D O I
10.5796/electrochemistry.83.332
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We fabricated graphene modified glassy carbon (Gr/GC) electrodes to enhance the direct electron transfer (DET) of bilirubin oxidase (BOD) by casting graphene-dispersed solutions with different concentrations. With a concentration of 2 mu g mu L-1, a large increase was observed in the reduction current at the BOD-modified Gr/GC electrode, and the value was 74 times that of a BOD-modified GC electrode (unmodified with graphene). Moreover, with graphene modification the capacitance increase was much less than with other carbon materials including carbon black and graphite powder. These results demonstrate that a graphene nanostructure is suitable for achieving the efficient DET of BOD. (C) The Electrochemical Society of Japan, All rights reserved.
引用
收藏
页码:332 / 334
页数:3
相关论文
共 18 条
[1]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[2]   Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts [J].
Goh, Madeline Shuhua ;
Pumera, Martin .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1375-1377
[3]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242
[4]   Quantifying the electron transfer sites of graphene [J].
Hallam, Philip M. ;
Banks, Craig E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (01) :8-11
[5]   Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J].
Kang, Xinhuang ;
Wang, Jun ;
Wu, Hong ;
Aksay, Ilhan A. ;
Liu, Jun ;
Lin, Yuehe .
BIOSENSORS & BIOELECTRONICS, 2009, 25 (04) :901-905
[6]   Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics [J].
Katz, E ;
Willner, I .
CHEMPHYSCHEM, 2004, 5 (08) :1085-1104
[7]   Bilirubin oxidases in bioelectrochemistry: Features and recent findings [J].
Mano, Nicolas ;
Edembe, Lise .
BIOSENSORS & BIOELECTRONICS, 2013, 50 :478-485
[8]   Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes [J].
Martins, Marccus V. A. ;
Pereira, Andressa R. ;
Luz, Roberto A. S. ;
Iost, Rodrigo M. ;
Crespitho, Frank N. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (33) :17426-17436
[9]   Graphene Based Electrochemical Sensors and Biosensors: A Review [J].
Shao, Yuyan ;
Wang, Jun ;
Wu, Hong ;
Liu, Jun ;
Aksay, Ilhan A. ;
Lin, Yuehe .
ELECTROANALYSIS, 2010, 22 (10) :1027-1036
[10]   RAMAN-SPECTRA AND ELECTRICAL-CONDUCTIVITY OF GLASSY-CARBON [J].
SOUKUP, L ;
GREGORA, I ;
JASTRABIK, L ;
KONAKOVA, A .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1992, 11 (1-4) :355-357