High-dimensional quantum cryptography with twisted light

被引:528
作者
Mirhosseini, Mohammad [1 ]
Magana-Loaiza, Omar S. [1 ]
O'Sullivan, Malcolm N. [1 ]
Rodenburg, Brandon [1 ]
Malik, Mehul [1 ,2 ]
Lavery, Martin P. J. [3 ]
Padgett, Miles J. [3 ]
Gauthier, Daniel J. [4 ]
Boyd, Robert W. [1 ,5 ]
机构
[1] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[2] Austrian Acad Sci, IQOQI, A-1090 Vienna, Austria
[3] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[4] Duke Univ, Dept Phys, Durham, NC 27708 USA
[5] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
基金
英国工程与自然科学研究理事会;
关键词
quantum key distribution; orbital angular momentum; singular optics; ORBITAL ANGULAR-MOMENTUM; KEY DISTRIBUTION; ATMOSPHERIC-TURBULENCE; SINGLE-PHOTON; STATES; BEAMS; ENTANGLEMENT; PROPAGATION; CHANNELS;
D O I
10.1088/1367-2630/17/3/033033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 59 条
[1]   Large-alphabet quantum key distribution using energy-time entangled bipartite states [J].
Ali-Khan, Irfan ;
Broadbent, Curtis J. ;
Howell, John C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[2]   Beating the channel capacity limit for linear photonic superdense coding [J].
Barreiro, Julio T. ;
Wei, Tzu-Chieh ;
Kwiat, Paul G. .
NATURE PHYSICS, 2008, 4 (04) :282-286
[3]   Quantum cryptography using larger alphabets [J].
Bechmann-Pasquinucci, H ;
Tittel, W .
PHYSICAL REVIEW A, 2000, 61 (06) :6
[4]  
Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI [DOI 10.1103/REVMODPHYS.74.145, DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[6]   Quantum key distribution using multilevel encoding -: art. no. 012306 [J].
Bourennane, M ;
Karlsson, A ;
Björk, G .
PHYSICAL REVIEW A, 2001, 64 (01) :5
[7]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[8]  
Brassard G., 1993, WORKSHOP THEORY APPL, P410, DOI 10.1007/3-540-48285-7_35
[9]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[10]  
CSISZAR I, 1978, IEEE T INFORM THEORY, V24, P339, DOI 10.1109/TIT.1978.1055892