Simulating Metabolic Flexibility in Low Energy Expenditure Conditions Using Genome-Scale Metabolic Models

被引:2
作者
Cabbia, Andrea [1 ]
Hilbers, Peter A. J. [1 ]
van Riel, Natal A. W. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Computat Biol, Groene Loper 5, NL-5612 AE Eindhoven, Netherlands
[2] Univ Amsterdam, Amsterdam Univ Med Ctr, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
metabolic flexibility; respiratory quotient; energy expenditure; INSULIN-RESISTANCE; SKELETAL-MUSCLE; RECONSTRUCTION; DYSFUNCTION; EXERCISE;
D O I
10.3390/metabo11100695
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolic flexibility is the ability of an organism to adapt its energy source based on nutrient availability and energy requirements. In humans, this ability has been linked to cardio-metabolic health and healthy aging. Genome-scale metabolic models have been employed to simulate metabolic flexibility by computing the Respiratory Quotient (RQ), which is defined as the ratio of carbon dioxide produced to oxygen consumed, and varies between values of 0.7 for pure fat metabolism and 1.0 for pure carbohydrate metabolism. While the nutritional determinants of metabolic flexibility are known, the role of low energy expenditure and sedentary behavior in the development of metabolic inflexibility is less studied. In this study, we present a new description of metabolic flexibility in genome-scale metabolic models which accounts for energy expenditure, and we study the interactions between physical activity and nutrition in a set of patient-derived models of skeletal muscle metabolism in older adults. The simulations show that fuel choice is sensitive to ATP consumption rate in all models tested. The ability to adapt fuel utilization to energy demands is an intrinsic property of the metabolic network.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes [J].
Bordenave, S. ;
Metz, L. ;
Flavier, S. ;
Lambert, K. ;
Ghanassia, E. ;
Dupuy, A. -M. ;
Michel, F. ;
Puech-Cathala, A. -M. ;
Raynaud, E. ;
Brun, J. -F. ;
Mercier, J. .
DIABETES & METABOLISM, 2008, 34 (02) :162-168
[2]   Recon3D enables a three-dimensional view of gene variation in human metabolism [J].
Brunk, Elizabeth ;
Sahoo, Swagatika ;
Zielinski, Daniel C. ;
Altunkaya, Ali ;
Drager, Andreas ;
Mih, Nathan ;
Gatto, Francesco ;
Nilsson, Avlant ;
Gonzalez, German Andres Preciat ;
Aurich, Maike Kathrin ;
Prlic, Andreas ;
Sastry, Anand ;
Danielsdottir, Anna D. ;
Heinken, Almut ;
Noronha, Alberto ;
Rose, Peter W. ;
Burley, Stephen K. ;
Fleming, Ronan M. T. ;
Nielsen, Jens ;
Thiele, Ines ;
Palsson, Bernhard O. .
NATURE BIOTECHNOLOGY, 2018, 36 (03) :272-+
[3]   A Distance-Based Framework for the Characterization of Metabolic Heterogeneity in Large Sets of Genome-Scale Metabolic Models [J].
Cabbia, Andrea ;
Hilbers, Peter A. J. ;
van Riel, Natal A. W. .
PATTERNS, 2020, 1 (06)
[4]   Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle [J].
Corpeleijn, E. ;
Saris, W. H. M. ;
Blaak, E. E. .
OBESITY REVIEWS, 2009, 10 (02) :178-193
[5]   COBRApy: COnstraints-Based Reconstruction and Analysis for Python']Python [J].
Ebrahim, Ali ;
Lerman, Joshua A. ;
Palsson, Bernhard O. ;
Hyduke, Daniel R. .
BMC SYSTEMS BIOLOGY, 2013, 7
[6]   Metabolic flexibility and insulin resistance [J].
Galgani, Jose E. ;
Moro, Cedric ;
Ravussin, Eric .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2008, 295 (05) :E1009-E1017
[7]   MINERVA-a platform for visualization and curation of molecular interaction networks [J].
Gawron, Piotr ;
Ostaszewski, Marek ;
Satagopam, Venkata ;
Gebel, Stephan ;
Mazein, Alexander ;
Kuzma, Michal ;
Zorzan, Simone ;
McGee, Fintan ;
Otjacques, Benoit ;
Balling, Rudi ;
Schneider, Reinhard .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2016, 2
[8]   Fuel selection in human skeletal muscle in insulin resistance - A reexamination [J].
Kelley, DE ;
Mandarino, LJ .
DIABETES, 2000, 49 (05) :677-683
[9]   Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models [J].
Lewis, Nathan E. ;
Hixson, Kim K. ;
Conrad, Tom M. ;
Lerman, Joshua A. ;
Charusanti, Pep ;
Polpitiya, Ashoka D. ;
Adkins, Joshua N. ;
Schramm, Gunnar ;
Purvine, Samuel O. ;
Lopez-Ferrer, Daniel ;
Weitz, Karl K. ;
Eils, Roland ;
Koenig, Rainer ;
Smith, Richard D. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[10]   Metabolic Control of Longevity [J].
Lopez-Otin, Carlos ;
Galluzzi, Lorenzo ;
Freije, Jose M. P. ;
Madeo, Frank ;
Kroemer, Guido .
CELL, 2016, 166 (04) :802-821