A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing

被引:42
作者
Manickam, Arun [1 ]
Singh, Rituraj [1 ]
McDermott, Mark W. [1 ]
Wood, Nicholas [1 ]
Bolouki, Sara [1 ]
Naraghi-Arani, Pejman [1 ]
Johnson, Kirsten A. [1 ]
Kuimelis, Robert G. [1 ]
Schoolnik, Gary [1 ]
Hassibi, Arjang [1 ]
机构
[1] InSilixa, Sunnyvale, CA 94089 USA
基金
美国国家卫生研究院;
关键词
Biochip; biosensor; fluorescence spectroscopy; image sensors; infectious disease; microarray; molecular diagnostics (MDx); nucleic acid; optical filter; polymerase chain reaction (PCR); PROSTATE-SPECIFIC ANTIGEN; SENSOR ARRAY;
D O I
10.1109/JSSC.2017.2754363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Design and successful implementation of a fully integrated CMOS fluorescence biochip for deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) testing in molecular diagnostics (MDx) is presented. The biochip includes a 32 x 32 array of continuous wave fluorescence detection biosensing elements. Each biosensing element is capable of having unique DNA probe sequences, wavelength-selective multi-dielectric emission filter (OD of 3.6), resistive heater for thermal cycling, and a high performance and programmable photodetector. The dimension of each biosensor is 100 mu m x 100 mu m with a 50 mu m x 50 mu m Nwell-Psub photodiode acting as the optical transducer, and a Sigma Delta modulator-based photocurrent sensor. The measured photodetector performance shows similar to 116 dB detection dynamic range (10 fA-10 nA) over the 25 degrees C-100 degrees C temperature range, while being similar to 1 dB away from the fundamental shot-noise limit. To empirically demonstrate the compatibility of this biochip with MDx applications, we have successfully utilized the array and its thermal cycling capability to adopt a 7-plex panel for detection of six human upper respiratory viruses.
引用
收藏
页码:2857 / 2870
页数:14
相关论文
共 47 条
  • [11] Härmä H, 2000, LUMINESCENCE, V15, P351, DOI 10.1002/1522-7243(200011/12)15:6<351::AID-BIO624>3.0.CO
  • [12] 2-3
  • [13] Real-time DNA microarray analysis
    Hassibi, Arjang
    Vikalo, Haris
    Riechmann, Jose Luis
    Hassibi, Babak
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (20) : e132 - e132
  • [14] NEW IMMUNOASSAY BASED ON FLUORESCENCE EXCITATION BY INTERNAL-REFLECTION SPECTROSCOPY
    KRONICK, MN
    LITTLE, WA
    [J]. JOURNAL OF IMMUNOLOGICAL METHODS, 1975, 8 (03) : 235 - 240
  • [15] Lakowicz J. R., 2006, Principles of fluorescence spectroscopy, DOI [DOI 10.1007/978-0-387-46312-4, DOI 10.1007/978-0-387-46312-4/COVER]
  • [16] Active CMOS sensor array for electrochemical biomolecular detection
    Levine, Peter M.
    Gong, Ping
    Levicky, Rastislav
    Shepard, Kenneth L.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (08) : 1859 - 1871
  • [17] SURFACE-PLASMON RESONANCE FOR GAS-DETECTION AND BIOSENSING
    LIEDBERG, B
    NYLANDER, C
    LUNDSTROM, I
    [J]. SENSORS AND ACTUATORS, 1983, 4 (02): : 299 - 304
  • [18] MacLeod A.H., 2001, Thin-Film Optical Filters
  • [19] A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array
    Manickam, Arun
    Chevalier, Aaron
    McDermott, Mark
    Ellington, Andrew D.
    Hassibi, Arjang
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2010, 4 (06) : 379 - 390
  • [20] Antibody engineering
    Maynard, J
    Georgiou, G
    [J]. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2000, 2 : 339 - 376