A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing

被引:42
作者
Manickam, Arun [1 ]
Singh, Rituraj [1 ]
McDermott, Mark W. [1 ]
Wood, Nicholas [1 ]
Bolouki, Sara [1 ]
Naraghi-Arani, Pejman [1 ]
Johnson, Kirsten A. [1 ]
Kuimelis, Robert G. [1 ]
Schoolnik, Gary [1 ]
Hassibi, Arjang [1 ]
机构
[1] InSilixa, Sunnyvale, CA 94089 USA
基金
美国国家卫生研究院;
关键词
Biochip; biosensor; fluorescence spectroscopy; image sensors; infectious disease; microarray; molecular diagnostics (MDx); nucleic acid; optical filter; polymerase chain reaction (PCR); PROSTATE-SPECIFIC ANTIGEN; SENSOR ARRAY;
D O I
10.1109/JSSC.2017.2754363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Design and successful implementation of a fully integrated CMOS fluorescence biochip for deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) testing in molecular diagnostics (MDx) is presented. The biochip includes a 32 x 32 array of continuous wave fluorescence detection biosensing elements. Each biosensing element is capable of having unique DNA probe sequences, wavelength-selective multi-dielectric emission filter (OD of 3.6), resistive heater for thermal cycling, and a high performance and programmable photodetector. The dimension of each biosensor is 100 mu m x 100 mu m with a 50 mu m x 50 mu m Nwell-Psub photodiode acting as the optical transducer, and a Sigma Delta modulator-based photocurrent sensor. The measured photodetector performance shows similar to 116 dB detection dynamic range (10 fA-10 nA) over the 25 degrees C-100 degrees C temperature range, while being similar to 1 dB away from the fundamental shot-noise limit. To empirically demonstrate the compatibility of this biochip with MDx applications, we have successfully utilized the array and its thermal cycling capability to adopt a 7-plex panel for detection of six human upper respiratory viruses.
引用
收藏
页码:2857 / 2870
页数:14
相关论文
共 47 条
  • [1] [Anonymous], 2012, Chemical Sensors and Biosensors: Fundamentals and Applications
  • [2] Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor
    Bozym, Rebecca A.
    Thompson, Richard B.
    Stoddard, Andrea K.
    Fierke, Carol A.
    [J]. ACS CHEMICAL BIOLOGY, 2006, 1 (02) : 103 - 111
  • [3] Byungchul Jang, 2009, 2009 IEEE International Solid-State Circuits Conference (ISSCC 2009), P436, DOI 10.1109/ISSCC.2009.4977495
  • [4] Revised UV extinction coefficients for nucleoside-5'-monophosphates and unpaired DNA and RNA
    Cavaluzzi, MJ
    Borer, PN
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (01) : e13
  • [5] The affymetrix GeneChip® platform:: An overview
    Dalma-Weiszhausz, Dennise D.
    Warrington, Janet
    Tanimoto, Eugene Y.
    Miyada, Garrett
    [J]. DNA MICROARRAYS PART A: ARRAY PLATFORMS AND WET-BENCH PROTOCOLS, 2006, 410 : 3 - 28
  • [6] ELECTROCHEMICAL TECHNIQUES FOR THE DEVELOPMENT OF AMPEROMETRIC BIOSENSORS
    DAVIS, G
    [J]. BIOSENSORS, 1985, 1 (02) : 161 - 178
  • [7] A 0.18-/μm CMOS bioluminescence detection lab-on-chip
    Eltoukhy, H
    Salama, K
    El Gamal, A
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (03) : 651 - 662
  • [8] *EMVA, 2016, 1288 EMVA
  • [9] GMR biosensor arrays: A system perspective
    Hall, D. A.
    Gaster, R. S.
    Lin, T.
    Osterfeld, S. J.
    Han, S.
    Murmann, B.
    Wang, S. X.
    [J]. BIOSENSORS & BIOELECTRONICS, 2010, 25 (09) : 2051 - 2057
  • [10] Aptamer beacons for the direct detection of proteins
    Hamaguchi, N
    Ellington, A
    Stanton, M
    [J]. ANALYTICAL BIOCHEMISTRY, 2001, 294 (02) : 126 - 131