Some Gruss-type inequalities using generalized Katugampola fractional integral

被引:10
作者
Aljaaidi, Tariq A. [1 ]
Pachpatte, Deepak B. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 02期
关键词
Gruss inequality; generalized fractional integral;
D O I
10.3934/math.2020070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to obtain a generalization of some Gruss-type inequalities in case of functional bounds by using a generalized Katugampola fractional integral. We obtained new Gruss type inequalitys with functional bounds via the generalized fractional integral operators having same and different parameters. Results obtained are more generalized in nature.
引用
收藏
页码:1011 / 1024
页数:14
相关论文
共 22 条
  • [1] Discrete Gruss type inequality on fractional calculus
    Akin, Elvan
    Asliyuce, Serkan
    Guvenilir, Ayse Feza
    Kaymakcalan, Billur
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [2] Chinchane V.L., 2019, INDIAN J MATH, V61, P27
  • [3] Chinchane V. L., 2014, Journal Fractional Calculusand Applications, V5, P1
  • [4] Dahmani Z., 2010, INT J NONLIN SCI NUM, V9, P493
  • [5] Dahmani Z, 2010, BULL MATH ANAL APPL, V2, P93
  • [6] A generalization of Gruss's inequality in inner product spaces and applications
    Dragomir, SS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (01) : 74 - 82
  • [7] Dragomir SS, 2000, INDIAN J PURE AP MAT, V31, P397
  • [8] Du T., 2019, APPL ANAL, V2019, P1
  • [9] Du TS, 2016, J INEQUAL APPL, DOI 10.1186/s13660-016-1251-5
  • [10] Elezovic N., 2007, J MATH INEQUAL, V1, P425, DOI 10.7153/jmi-01-36