The Fourier and Hilbert transforms Under the Bargmann transform

被引:7
作者
Dong, Xing-Tang [1 ]
Zhu, Kehe [2 ,3 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin, Peoples R China
[2] Shantou Univ, Dept Math, Shantou, Peoples R China
[3] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
基金
中国国家自然科学基金;
关键词
Bargmann transform; Fock space; fractional Fourier transform; fractional Hilbert transform; wavelet transform; ANALYTIC-FUNCTIONS; SPACE;
D O I
10.1080/17476933.2017.1324430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a canonical unitary transformation from L-2(R) onto the Fock space F-2, called the Bargmann transform. We study the action of the Bargmann transform on several classical integral operators on L-2(R), including the fractional Fourier transform, the fractional Hilbert transform and the wavelet transform.
引用
收藏
页码:517 / 531
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[2]  
[Anonymous], 1989, ANN MATH STUDIES
[5]   HEAT-FLOW AND BEREZIN-TOEPLITZ ESTIMATES [J].
BERGER, CA ;
COBURN, LA .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (03) :563-590
[6]   Recent developments in the theory of the fractional Fourier and linear canonical transforms [J].
Bultheel, A. ;
Martinez-Sulbaran, H. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (05) :971-1005
[7]  
Coburn LA, 2001, OPER THEOR, V129, P169
[8]  
Folland G.B., 1992, FOURIER ANAL ITAPP
[9]   Fractional Hilbert transform [J].
Lohmann, AW ;
Mendlovic, D ;
Zalevsky, Z .
OPTICS LETTERS, 1996, 21 (04) :281-283
[10]  
Ozaktas H. M., 2001, The Fractional Fourier Transform With Applications in Optics and Signal Processing