MULTIPLE SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

被引:0
作者
Chen, Wenjing [1 ]
Yang, Jianfu [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Multiple solutions; Semilinear elliptic equation; Riemannian manifold; Ljusternik-Schnirelmann category; SCALAR FIELD-EQUATIONS; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; STATES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a compact, connected, orientable, Riemannian n-manifold of class C-infinity with Riemannian metric g (n >= 3). We study the existence of solutions to the equation -epsilon(2)Delta(g)u + V(x)u = K(x)vertical bar u vertical bar(p-2)u on this Riemannian manifold. Here 2 < p < 2* = 2n/(n - 2), V (x) and K(x) are continuous functions. We show that the shape of V (x) and K(x) affects the number of solutions, and then prove the existence of multiple solutions.
引用
收藏
页数:16
相关论文
共 18 条
[1]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[2]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[3]  
[Anonymous], 1997, Topol. Methods Nonlinear Anal, DOI DOI 10.12775/TMNA.1997.019
[4]  
[Anonymous], 1989, APPL MATH SCI
[5]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[6]   On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds [J].
Benci, Vieri ;
Bonanno, Claudio ;
Micheletti, Anna Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (02) :464-489
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]   Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions [J].
Cingolani, S ;
Lazzo, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (01) :118-138
[9]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137
[10]  
Gidas B., 1981, Math. Anal. Appl. Part A: Adv. Math. Suppl. Stud., V7, P369